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ABSTRACT 

This dissertation focuses on the analysis of lock-exchange gravity-driven flows at 

high Grashof numbers using highly resolved numerical simulations and Large Eddy 

Simulation (LES) techniques.  The present method uses a non-dissipative Navier-Stokes 

solver in which the sub-grid scale (SGS) viscosity and diffusivity are calculated 

dynamically.  The use of LES allowed the study of these gravity current flows at Grashof 

numbers (Gr=109-1012) much higher than those previously achieved using Direct 

Numerical Simulation (DNS).  This is important because most practical applications of 

gravity current flows in river, coastal and ocean engineering occur at Grashof numbers 

much higher than the ones considered in previous DNS simulations and even in 

experimental laboratory studies.  Three different Boussinesq compositional gravity-

current configurations are examined in detail.  The first configuration corresponds to the 

case of a lock exchange flow in an infinite channel in which the volume of the heavier 

lock fluid is infinite.  The second configuration is the case in which the heavier lock fluid 

is finite (bottom propagating current).  The third configuration corresponds to an 

intrusion current in which a certain amount of lock fluid is released into a two-layer 

ambient fluid.  For all the configurations, it is found that the three-dimensional (3D) 

simulations correctly predict the main quantitative (e.g., front velocity at the different 

phases of the evolution of the current, bore velocity, etc.) and qualitative (e.g., formation 

of interfacial Kelvin-Helmholtz billows, their stretching and eventual break up into 3D 

turbulence) aspects of these flows observed in experimental investigations.  The spatial 

and temporal bed shear stress distributions induced by the passage of bottom propagating 

currents are analyzed in detail, as accurate prediction of this quantity is essential in 

estimating the amount of sediment entrained by a compositional current propagating over 

a loose bed in river and coastal applications.  Additionally, the energy budget, the 

distribution of the spanwise-averaged local dissipation rate and the streamwise 
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distributions of the local dissipation rate integrated over vertical planes are analyzed at 

different stages of the evolution of the current.  All these quantities are practically 

impossible to be determined experimentally but essential in understanding the physics of 

the flow at the different stages of the evolution of the gravity current. 
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No bird soars too high if he soars with his own wings. 
                                           William Blake 
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ABSTRACT 

This dissertation focuses on the analysis of lock-exchange gravity-driven flows at 

high Grashof numbers using highly resolved numerical simulations and Large Eddy 

Simulation (LES) techniques.  The present method uses a non-dissipative Navier-Stokes 

solver in which the sub-grid scale (SGS) viscosity and diffusivity are calculated 

dynamically.  The use of LES allowed the study of these gravity current flows at Grashof 

numbers (Gr=109-1012) much higher than those previously achieved using Direct 

Numerical Simulation (DNS).  This is important because most practical applications of 

gravity current flows in river, coastal and ocean engineering occur at Grashof numbers 

much higher than the ones considered in previous DNS simulations and even in 

experimental laboratory studies.  Three different Boussinesq compositional gravity-

current configurations are examined in detail.  The first configuration corresponds to the 

case of a lock exchange flow in an infinite channel in which the volume of the heavier 

lock fluid is infinite.  The second configuration is the case in which the heavier lock fluid 

is finite (bottom propagating current).  The third configuration corresponds to an 

intrusion current in which a certain amount of lock fluid is released into a two-layer 

ambient fluid.  For all the configurations, it is found that the three-dimensional (3D) 

simulations correctly predict the main quantitative (e.g., front velocity at the different 

phases of the evolution of the current, bore velocity, etc.) and qualitative (e.g., formation 

of interfacial Kelvin-Helmholtz billows, their stretching and eventual break up into 3D 

turbulence) aspects of these flows observed in experimental investigations.  The spatial 

and temporal bed shear stress distributions induced by the passage of bottom propagating 

currents are analyzed in detail, as accurate prediction of this quantity is essential in 

estimating the amount of sediment entrained by a compositional current propagating over 

a loose bed in river and coastal applications.  Additionally, the energy budget, the 

distribution of the spanwise-averaged local dissipation rate and the streamwise 
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distributions of the local dissipation rate integrated over vertical planes are analyzed at 

different stages of the evolution of the current.  All these quantities are practically 

impossible to be determined experimentally but essential in understanding the physics of 

the flow at the different stages of the evolution of the gravity current. 
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CHAPTER 1  

INTRODUCTION 

Predicting and understanding the evolution of gravity currents (GCs) is of 

considerable interest because these flows are often encountered in engineering and 

geosciences.  Of particular interest is the study of their impact on the environment (e.g., 

see Fannelop, 1994 and Simpson, 1997).  Gravity currents are flows driven by density 

differences within a fluid.  These density differences can be the result of temperature 

differences in the atmosphere (e.g., sea breeze or thunderstorm fronts), temperature 

differences within large bodies of water (e.g., lakes, reservoirs) due to heating and 

radiation from the atmosphere, presence of dissolved substances that modify the density 

(e.g., salt in water or hazardous release of buoyant pollutants in the environment), spilling 

of a fluid into another (e.g., oil into water) or presence of particulates in the flow (e.g., 

sediment particles in turbidity currents, or powder snow in avalanches).   

1.1 Motivation 

Locking operations in an urban estuarine environment create unique location-

specific problems to fish passage and the environment.  One example of this is the Lake 

Washington Ship Canal in Washington. The Hiram M. Chittenden lock and dam facility 

(Chittenden facility) was completed in 1914 as part of the Lake Washington Ship Canal 

system to facilitate transport of logs and coal.  The Chittenden facility is unique in the 

United States as it separates seawater in Puget Sound and fresh water from Lake 

Washington.  This separation has created ecological and environmental problems 

including saltwater intrusion; zero dissolved oxygen (DO) levels in the hypolimnion of 

the lake towards the end of summer; warm surface water temperatures; longer 

stratification periods of the lake; and last but not least, flushing limited to the northern 

end of the lake with the exception of spring when the spring runoff is important.  
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Ecological and environmental problems are due in part to the high traffic volume 

of the facility.  The Chittenden facility is regarded as the busiest lock facility in the 

United States.  These ecological and environmental problems are both a threat to the 

urban consumer and the salmonids that pass through the system.  The canal is the only 

means of migration for salmonids that spawn in Lake Washington, Lake Sammamish and 

the Cedar River watersheds.  Due to the thermal or saline differential created at the lock, 

spawning adult salmons congregate near the lock, delaying their acclimatization to fresh 

water conditions and subsequently, their upstream migration.  The anoxic conditions at 

the hypolimnion and high surface temperatures also create non-conducive environments 

for salmonids migrating upstream.  

Besides the ecological problems linked to the formation and transport of saline 

and thermal wedges, another problem of great practical interest is the amount of sediment 

entrained, the distances over which the sediment is carried and the deposition patterns 

downstream in the channel, each time the lock facility is operated.  This is because, each 

time a saline or thermal GC is propagating over a loose bed, it entrains sediment and it 

induces the formation of a turbidity current.  Over time, the bathymetry of the channel 

downstream of the lock facility can change significantly due to the scour and erosion 

induced by the turbidity current. 

In the present work, the focus is on a simplified geometry which corresponds to 

the formation of saline / thermal gravity currents in lock exchange configurations in a 

straight channel.  This simplified geometry retains most of the fundamental flow features 

associated with the formation and evolution of gravity currents at real lock facilities.  

Besides studying the details of the formation, evolution and decay of these currents under 

different flow conditions, the present study focuses on the spatial and temporal 

distributions of the bed shear stress which is the main variable that determines the 

capacity of the saline / thermal gravity current to entrain sediment.   
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1.2 Research Needs And Research Objectives 

One of the main parameters that determine the evolution of a lock-exchange flow 

is the value of the Grashof number.  The Grashof number represents the ratio between the 

buoyancy forces and the viscous forces.  One of the main challenges related to the study 

of gravity currents encountered in practical applications is the quantification of scale 

effects, as both laboratory experiments and three-dimensional Direct Numerical 

Simulation (DNS) studies are conducted at Grashof numbers that are substantially lower.  

In fact, in the case of three-dimensional DNS studies information is available only at low 

Grashof numbers where the flow inside the head of the gravity current is, at best, mildly 

turbulent.  This is in stark contrast to gravity currents observed in rivers, lakes and oceans 

where the flow inside the gravity current is strongly turbulent. 

At a more fundamental level, gravity current flows are, to a great extent, 

determined by the evolution of several 3D flow instabilities.  The first one is the Kelvin-

Helmholtz instability behind the front of the current, at the interface between the current 

and the ambient fluid, which is responsible for the formation of billows and for much of 

the mixing.  This instability starts as a predominantly 2D instability.  The second one is 

the instability responsible for the formation of the lobes and clefts at the front of the 

gravity current.  The lobes are defined as the large scale structures in the forms of bulges 

that develop at the front of the current and continually change shape.  They are linked by 

clefts that are observed to grow and merge or, on the contrary, split as the current 

continues to propagate.  For high Grashof number currents, where the flow is expected to 

be highly turbulent some distance behind the front of the current, the near bed flow is 

expected to contain the usual turbulent structures and associated instabilities observed in 

constant-density turbulent boundary layers.  The most obvious one is the formation of 

high and low streamwise velocity streaks.  The growth of these instabilities and the 

formation and evolution of the coherent structures associated with them is still not well 

understood. 
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In the range of Grashof numbers (Gr>>108) of practical interest in most practical 

applications in river, coastal and ocean engineering, no detailed quantitative information 

concerning the phenomena present at the head of a bottom-propagating gravity current or 

of an intrusion gravity current (e.g., the instabilities and mechanisms leading to the lobe-

and-cleft structure at the front), the flow structure in the near-bed region, or detailed 

measurements of the velocity and density fields within the current are available from 

previous experimental or numerical studies.  Additionally, in many applications related to 

turbidity currents or to compositional currents propagating over loose beds, information 

on the spatial and temporal distributions of the bed shear stress is essential to determine 

the amount of sediment entrained and carried by the current.  The measurement of the 

instantaneous bed shear stress distribution is practically impossible to achieve 

experimentally.  This kind of information can be used in simpler models that try to 

predict the sediment entrained by the current in an integral sense, besides qualitatively 

understanding the way the sediment is entrained.   Finally, information on the global 

energy balance at different stages of the evolution of the gravity current is quite difficult 

and very expensive to achieve experimentally. 

In this regard, high resolution three-dimensional eddy resolving simulations like 

Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) can provide 

additional valuable insight needed to understand the development of lock-exchange 

gravity currents.  For the Grashof / Reynolds numbers of practical interest (Gr>>108), 

where the flow inside part of the GC is highly turbulent, LES using non-dissipative 

numerical models and sub-grid scale models, that can account in a physical way for the 

effect of the smallest unresolved scales on the larger ones in a flow in which phenomena 

such as relaminarization and transition are present, appears to be the best available 

numerical tool at the present time.  

Therefore the major research objectives of this study are: 
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•  Validation of an existing LES model to simulate Boussinesq gravity currents 

in lock-exchange configuration using experimental data and theory 

• Quantifying the capabilities and limits of the much less expensive 2D LES 

simulations. 

• Investigating the flow structure and phenomena present at the head and tail of 

the gravity current for different lock-exchange configurations (bottom 

propagating and intrusion currents) over a wide range of Grashof numbers 

• Investigating the bed shear stress distribution (bottom propagating currents), 

global energy balance and the spatial and temporal distributions of the 

dissipation rate 

The chart in Fig. 1.1 provides an overview of the 2D and 3D simulations and 

parametric studies (e.g., effect of the Grashof number, effect of the ratio of initial aspect 

ratio of the lock fluid, etc.) performed as part of the present investigation in which lock 

exchange flows are simulated for three generic configurations:  

1) lock exchange bottom-propagating compositional gravity currents with 

an infinite amount of lock fluid (this configuration corresponds to the 

case when the lateral wall in the tank or channel is situated at large 

distances from the lock gate such that the backward propagating 

current does not interact with the lateral end wall)  

2) lock exchange bottom-propagating compositional gravity currents with 

a finite amount of lock fluid (this is the case that would correspond to 

gravity currents forming at lock facilities) 

3) lock exchange intrusion compositional gravity currents with a finite 

volume of lock fluid (this is the case when dense water intrudes into a 

stratified reservoir) 
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The outline of the thesis is as follows. Chapter 2 provides a review of previous 

experimental and numerical studies for each of the lock-exchange configurations 

considered in the present investigation.  Chapter 3 presents the numerical model used to 

perform the simulations. Chapter 4 presents 2D LES simulations of lock-exchange flows. 

Chapter 5 discusses 3D LES simulations of infinite-volume lock-exchange flows at 

Grashof numbers in the range of 106 to 109.  Chapter 6 discusses 3D LES simulations of 

finite-volume lock-exchange flows over the slumping and inviscid self-similar phase at 

Grashof numbers in the range of 109 to 1012.  Chapter 7 compares results from two 3D 

LES simulations of intrusion currents propagating into a two-layer ambient fluid at 

Gr~109.  In the first case the intrusion propagates symmetrically while in the second case 

the intrusion propagates non-symmetrically, mostly inside the upper layer of ambient 

fluid.  Chapter 8 summarizes the main findings of the study and provides some 

recommendations for future work. 
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Figure 1.1. Summary of Lock-Exchange Configuration Studies performed in the present work.  
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CHAPTER 2  

GENERAL DESCRIPTION OF LOCK-EXCHANGE FLOWS, EXAMPLES AND 

LITERATURE REVIEW 

2.1 Basic Gravity Current Studies 

A large number of experimental and theoretical studies have been conducted to 

isolate the various mechanisms that drive GCs and predict the temporal evolution of 

global parameters such as the front velocity, Uf, the height of the head region, etc.  Most 

of these studies considered the case of low-density differences where the Boussinesq 

approximation is valid (Benjamin, 1968; Simpson, 1972; Britter & Simpson, 1978; 

Simpson & Britter, 1979; Huppert & Simpson, 1980; Huppert, 1982; Keller & Chyou, 

1991; Hallworth et al., 1996; Shin et al., 2004).  These studies of GCs developing in 

horizontal or tilted channels showed that the dynamics of the current can be explained 

using shallow-water theory if sufficiently accurate front conditions are prescribed for the 

non-hydrostatic flow at the head of the current (Hartel et al., 2000a).  For the Boussinesq 

case, most of these integral models, which are based on shallow-water equations or other 

theoretical approaches, assume that the GC generated by the lock release is energy 

conserving.  In many of these studies the model is derived by averaging momentum and 

mass over the depth and assuming vertically-uniform flow with hydrostatic pressure 

distribution.  Recently, Lowe et al. (2005) conducted experiments on non-Boussinesq 

lock-exchange flows and proposed several theoretical models.  They found that the model 

that assumes that the light and heavy GCs, propagating in opposite directions near the top 

and the bottom of the channel, are connected by a simple wave of expansion without an 

internal bore is the most representative for the non-Boussinesq case.  Two of the most 

important outcomes of these experimental studies were the visualization of the shape of 

the current and the measurement of its speed of propagation.  It was also observed (e.g., 

Britter & Simpson, 1978) that most of the mixing took place along the interface between 
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the two fluids behind the head and the Kelvin-Helmholtz (KH) billows that were shed 

behind the head were responsible in a great measure for the mixing between the two 

fluids.   

Benjamin (1968) proposed one of the first models that allowed calculation of the 

front velocity of a GC during the slumping phase in the inviscid (infinite Grashof 

number) limit.  In his model the height of the current was assumed to be constant over the 

length of the current.  For the case in which the initial depth of the lock fluid is equal to 

that of the channel (2h), the non-dimensional front velocity given in the form of a Froude 

number ( )2('/ hgU f , g’ is the reduced gravity) is equal to 1/2.  This corresponds to 

Uf/ub= 2/1 , where the buoyancy velocity is defined as hgub '=  

( minminmax /)(' CCCgg −= , where g’ is the reduced gravitational acceleration, maxC , minC  

are the maximum and minimum concentrations / densities in the domain, g is the 

gravitational acceleration and h is the channel depth).  His model did not account for 

viscosity effects, the no-slip condition at the bottom and/or top boundaries or for the 

mixing at the interface.  Shih et al. (2004) extended Benjamin’s model.  They proved 

that, for the case in which the initial height of the lock fluid was equal to that of the 

channel, the height of the energy conserving head is half the channel depth.  For this case 

their theory gives the same value for the Froude number. 

Linden & Simpson (1986) have shown that the mixing behind the head 

significantly affects the dynamics of the current.  For example, in one of their 

experiments they demonstrated that the current is destroyed once the denser fluid is 

vertically mixed with the lighter ambient fluid through turbulence; the turbulence within 

the flow was added by bubbling air.  Experimental studies (e.g., see Parsons & Garcia, 

1998) also showed that the effects of the Grashof / Reynolds number on the evolution of 

the GC can be important.  Mixing was found to intensify at larger Reynolds numbers.   
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2.2 Infinite Volume Lock Exchange Gravity Currents 

The simplest type of lock-exchange flow, which is the focus of Chapter 5, 

corresponds to two intrusion gravity currents that develop in an infinite channel.  

Initially, the heavier and lighter fluids (their initial depth is equal to that of the channel) 

are separated by a vertical lock gate that is removed instantaneously (see sketch in Fig. 

2.1).  The fluids do not mix once the lock gate is removed.  Rather, the less dense fluid 

intrudes above the heavier (denser) fluid and creates a gravity current moving to the left 

(backward propagating) in Fig. 2.1.  Meanwhile, the denser fluid slides toward the right, 

displaces some of the lighter fluid and creates a second (forward propagating) current 

moving to the right.  In the case in which the channel and the amounts of light and heavy 

fluid are infinite, the maximum and minimum densities in the domain remain constant 

and the speeds of the two currents, after a short accelerating phase, reach a practically 

constant value.  In the case of small density differences (Boussinesq case) and of 

identical top and bottom boundaries (e.g., no-slip smooth walls), the two speeds are 

expected to be equal (Lowe et al., 2005), especially if the gate is released in such a way 

that induces very small disturbances in the lock region.  The flow is dominated by two 

instabilities: the predominantly two-dimensional (2D) Kelvin Helmholtz (KH) instability 

at the interface between the heavier and the lighter fluid, and the 3D lobe-and-cleft 

instability at the two fronts.   

A larger number of numerical studies have been attempted to complement the 

information usually obtained from experimental studies.  Many of the earlier 

computational studies (e.g., Jacobsen & Magnussen, 1987; Klemp et al. 1994) employed 

coarse computational grids and low-order dissipative numerical schemes, coupled with 

empirical models to predict the evolution of the GC.  A review of numerical models 

based on integral models is available in Choi & Garcia (2002).  Integral models require 

additional closure relationships for the bed resistance and water entrainment.  RANS 

models were used to model lock-release flows by Chen & Lee (1999) and density 
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currents on a slope by Choi & Garcia (2002).  The challenge related to the use of RANS 

models is that practically all these models are calibrated for fully developed turbulent 

flows and are not capable of accurately predicting transition and relaminarization, which 

is essential for simulating lock-exchange flows.  High resolution numerical simulations of 

gravity currents using eddy-resolving techniques have only recently been attempted.  

Most of these studies are two-dimensional, employ DNS and use the Boussinesq 

approximation.  For the geometry and flow conditions considered Chapter 5 in which the 

GCs do not interact with the channel ends, non-Boussinesq lock exchange flows were 

studied recently using 2-D DNS by Birman et al. (2005) at Reynolds numbers up to 

12,000.  The simulations successfully captured the head height and propagating velocity 

of the light and dense currents.   

The only numerical simulations that can capture the development of the lobe and 

cleft instability at the front, the formation and breaking of the KH billows into smaller 3D 

eddies at the current interface, and the interaction between the near-wall turbulent 

structures (e.g., hairpin vortices, low and high speed streaks, etc.) that are present in high 

Grashof number currents with the regions away from the walls are eddy resolving 3D 

simulations.  The first 3D well-resolved numerical simulation of a Boussinesq lock-

exchange flow in an infinite channel was reported by Hartel et al. (2000a, 2000b), who 

used DNS at a relatively low Grashof number ( ( )2/υhuGr b= ~1.5×106, ν is the 

molecular viscosity).  Their simulation successfully captured the formation of the lobe 

and cleft instability at the front of the gravity current and allowed, for the first time, a 

detailed investigation of the flow topology in the head region.  The simulation 

highlighted the important role played by the lighter fluid present below the head, in the 

unstably stratified region between the foremost point and the stagnation point (in a 

reference system translating with the front velocity).  Previously (e.g., Simpson, 1972), it 

was thought that the main reason for the development of the lobe and cleft instability was 

the thin layer of light fluid pulled underneath the front (for the current propagating to the 
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right in Fig. 2.1).  Their 2D DNS simulations at Reynolds numbers up to about 30,000 

(Gr~109) showed that the topology of the flow in the head region remained similar to that 

of the spanwise-averaged flow from the 3D DNS conducted at a lower Reynolds number. 

2.3 Finite Volume Lock-Exchange Gravity Currents 

The case of a finite-volume lock-exchange flow corresponding to the collapse of a 

finite volume of heavier intrusion fluid into the lighter ambient fluid when the lock is 

released and its subsequent spreading over a bottom (horizontal) wall in the form of a 

gravity current (GC) is very often encountered in practical applications.  Even in the case 

in which the density differences are small enough for the current to be simulated using 

the Boussinesq approximation, compositional GCs in rivers, estuaries, lakes and oceans 

can travel over large distances and entrain, carry and deposit large quantities of sediment 

at considerable distances from the entrainment location, in the case in which they 

propagate over a loose sediment bed.  In all these applications, the Grashof / Reynolds 

numbers are very high and the current is strongly turbulent.   

A classical example is related to locking operations in an urban estuarine 

environment where a salinity driven GC develops each time the facility is operated.  

Saltwater intrusions can cause serious problems to the environment.  Moreover, a 

turbidity current is induced by the passage of the forcing salinity-driven GC propagating 

over a loose bed.  The bed morphology can change significantly over time with unwanted 

effects on the environment and channel navigability.   

In the case of finite-volume lock-release GCs in straight open channels (see 

sketch in Fig. 2.2), a lateral wall is present at one of the ends of the channel. The heavier 

lock fluid initially occupies a finite volume between the lateral wall and the lock gate.  

The top boundary, corresponding to the channel free surface, is usually assumed to be a 

slip boundary.  When the lock-gate wall is removed instantaneously, a GC will start 

forming and propagate along the bottom wall.  This case is the main focus of Chapter 5.  
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Also, the present investigations are limited to compositional currents where density 

differences are produced by a difference in a property of the fluid (e.g., temperature, 

salinity, etc.) and these differences are small enough for the Boussinesq approximation to 

be valid.  Only the case where the initial height of the heavier lock fluid is equal to the 

channel height is studied.   

In many respects, the case of a finite-volume lock-exchange flow propagating 

over a no-slip wall is similar to the infinite-volume lock-exchange flow in a channel.  

Among the important flow similarities between compositional GCs developing in the two 

cases are the fact that both currents are propagating over a thin layer of dislocated fluid 

that produces a region of unstable stratification near the bottom wall; the topology of the 

flow at the head, at least during the common slumping phase, is similar; the mixing is 

driven by the Kelvin-Helmholtz (KH) billows that are shed behind the front and which 

promote mixing.  In both cases, at sufficiently high Grashof numbers, the KH interfacial 

billows are subject to intense straining and stretching which forces their break up into 

three dimensional (3D) flow structures. 

However, there are also important differences due to the finite amount of potential 

energy available in the case of finite-volume GCs which make their evolution more 

complex.  If in the case of an infinite-volume lock exchange flow the current will 

propagate indefinitely with practically constant speed starting some short time after the 

gate release, for finite-volume lock-exchange GCs several distinct phases (e.g., see 

Huppert & Simpson, 1980, Rottman & Simpson, 1983) can be identified in the evolution 

of the current. 

A short acceleration phase (Fig. 2.2a) is present immediately after the release of 

the lock gate.  A bore of lighter fluid is observed to form concomitantly with the main 

gravity current containing heavier fluid in the lower part of the channel.  The bore and 

front of the current propagate with about the same speed initially.  Over this initial 

acceleration phase the velocity at the front of the bore and at the front of the bottom GC 
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increases sharply from zero.  The front velocity of the bore then starts decreasing as it 

starts interacting with the lateral wall, while the front velocity of the GC continues to 

vary before reaching a relatively constant value that characterizes the next (slumping) 

phase of evolution of the GC.   

Once the bore propagating backwards (Fig. 2.2a) has reflected from the end wall 

(Fig. 2.2b), a flow of lighter fluid than the one inside the GC starts propagating toward 

the front of the current in the form of a wave of depression with a relatively constant 

velocity (Ubore) that is slightly higher than the front velocity (Uf).  At this point the 

current is in the slumping phase.  Hallworth et al. (1996) showed that because the head 

remains essentially unmixed during the slumping phase, the front propagates at different 

rates for different initial values of the lock length or, equivalently, of the volume of the 

initial lock fluid.  Rottman & Simpson (1983) have shown that if the initial depth of the 

lock fluid is equal (the case considered in the present work) to the depth of the channel, 

the bore advancing toward the front has the form of an internal hydraulic jump.  Though 

the front propagates with practically constant depth and constant velocity (Uf), the flow is 

not self similar.  The ratio between the front velocity and the buoyancy velocity, 

hgub '= ,  is a parameter  that is dependent on the Grashof number, and the ratio 

between the initial depth of the lock fluid and the total depth of the channel.    

The inviscid self-similar phase starts when the forward propagating bore reaches 

the front of the current (Fig. 2.2c).  From this moment the front velocity is not constant 

anymore and the front velocity decays in time following a power law with a negative 

coefficient (Uf~t-1/3).  Hoult (1972) obtained a self-similar solution of the shallow water 

equations that describes this phase.  The flow is determined by the balance between the 

inertial force of the GC and the buoyancy force induced by the horizontal density 

gradient.  The time at which the transition between the slumping and inertial phases 

occurs is dependent on the initial volume of lock fluid.  The time interval to transition 

increases with the size of the initial volume.  In the limiting case of an infinite volume of 
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lock (heavier) fluid which is studied in Chapter 5, the flow never transitions to the 

inviscid self-similar phase.  

If the channel is long enough such that viscous effects become dominant, the 

current will transition to the viscous phase.  During this phase, the flow at the front 

decelerates faster (xf~t-1/5, Uf~t-4/5) and the current head further decreases in height (see 

Huppert, 1982, Rottman & Simpson, 1983).  The inviscid self-similar phase may not be 

present if the Grashof / Reynolds number of the GC is sufficiently low (Rottman & 

Simpson, 1983), in which case the current can transition directly from the slumping phase 

into the viscous phase.  

The lock-exchange flow corresponding to a bottom compositional GC in a 

channel with a lateral end wall was studied experimentally and analytically by among 

others, Huppert & Simpson (1980), Rottman & Simpson (1983), Choi & Garcia (1995), 

Hacker et al. (1996) and Shin et al. (2004).  In these experiments the evolution of the GC 

over the slumping and inertial phases was studied.  Huppert & Simpson (1980) proposed 

empirical relations for the Froude number defined with the front velocity as a function of 

the non-dimensional height of the GC during the slumping and inertial phases.  They also 

proposed a box model in which the main assumption is that the current advances as a 

series of boxes of equal volume.  Assuming the mass is conserved, this allows one to 

relate the position of the front to the height of the current.  Using the empirical relations 

and the conservation of mass, the position of the front and its velocity can be expressed 

function of time over both the slumping and inertial phases. The resulting expression for 

the front velocity during the slumping phase, however, predicted a small (power) decay 

with time instead of a constant value.  The expression for the front velocity during the 

inviscid phase was consistent with the expected power law decay in time with an 

exponent of -1/3 as predicted by Hoult (1972). 

  More complicated cases include the propagation of a lock-exchange 

compositional GC into a linearly stratified fluid.  This case was studied experimentally 
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and numerically by Maxworthy et al. (2002).  Their 2D highly resolved DNS simulations 

employed meshes with around 106 grid points for Grashof numbers up to 4×108.  The 

case of a particle-driven finite-volume lock-exchange flow at Gr=5×106 was studied by 

Necker et al. (2002).  This investigation was the first to use highly resolved 3D DNS 

simulations for particulate currents. It focused on the investigation of the front structure 

and sedimentation profiles.  Recently, Necker et al. (2005) performed a detailed analysis 

of the energy budgets, dissipative losses, influence of initial level of turbulence inside the 

lock fluid and of the mixing between interstitial and ambient fluid for particle-driven GCs 

over the same range of Grashof numbers.  More complex cases, such as particulate 

currents over slopes of varying angles and resuspending GCs on sloped surfaces were 

investigated using 2D DNS simulations by Blanchette et al. (2005a) and Blanchette et al. 

(2005b), respectively.  Although the governing equations were solved on a Cartesian 

mesh in a rectangular domain, the influence of the varying bottom slope was accounted 

for by introducing a spatially varying gravity vector.   

2.4 Finite-Volume Lock-Exchange Intrusive Gravity 

Currents 

For the case where the density of the lock fluid is between the minimum and 

maximum densities of the ambient fluid, the GC will propagate in the form of an 

intrusion at a level where the lock-fluid density is comparable to that of the ambient.  The 

dispersion of buoyant pollutants in a stably-stratified atmospheric boundary layer behaves 

like an intrusion front once the plume of pollutant reaches the level where its mean 

density is equal to that of the surrounding air.  A commonly cited example of a flow that 

can be modeled as an intrusive GC is the Morning Glory phenomenon (Sutherland et al., 

2004) which consists of a fast moving band of clouds intruding along an atmospheric 

inversion into a stratified system.  Another example of great practical importance 

corresponds to denser water (e.g., cold river water, water containing sediments, sewage 
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outfalls, buoyant pollutants, etc.) intruding into a stratified reservoir, lake or ocean in 

which the density of the intrusion is less than the density of the water at the bottom of the 

reservoir.  In this case the denser water initially propagates as a bottom intrusion until it 

reaches the level when the density of the water in the reservoir is close to its density.  

Then the bottom intrusion continues to propagate as a subsurface, relatively horizontal, 

IC.  The intrusion can be considered to occur in a two-layer fluid, in a multiple-layer fluid 

or in a continuously stratified fluid, depending on the reservoir stratification at the time of 

the intrusion.  The propagation of the IC can be accompanied by generation of strong 

Kelvin-Helmholtz (KH) billows behind the head region and by the formation of trailing 

and leading internal waves, depending on the flow conditions. 

If there is a relatively sharp interface between the two layers and the Reynolds 

number is large enough, several experimental investigations show that once the intrusion 

forms, it propagates with a relatively constant velocity, similar to the slumping phase 

observed in lock-exchange GCs propagating over no-slip surfaces.   One of the main 

purposes of the various theoretical models is to predict the value of the front velocity and 

the thickness of the intrusion head.  Benjamin (1968) was one of the first to propose a 

model that could be applied to either symmetrical intrusions or GCs propagating over slip 

surfaces.  In his inviscid energy-conserving model, the mixing between the intrusion 

current and the ambient flow due to the growth and break-up of KH billows was 

neglected.  Kao (1977) proposed a theoretical model for ICs developing into a two-layer 

fluid for the case in which the interface thickness is negligible and the depths of the two 

layers are infinite.  Holyer & Huppert (1980) considered the case of finite depths of the 

two layers and based their model on Benjamin’s (1968) theory for steady inviscid (non-

dissipative) currents propagating over a slip surface.  Their model allows for an arbitrary 

density value (within the range defined by the densities of the two ambient layers) inside 

the intrusion, for the presence of energy losses and is not limited to Boussinesq ICs.  The 

analytical model of Holyer & Huppert (1980) was extended by de Rooij et al. (1999) who 



www.manaraa.com

 

 

18

also included the effects of sedimentation of particles and detrainment of interstitial fluid 

for the case of a particle-driven interfacial intrusion.  For these applications, the model 

was found to successfully predict the length of the IC and associated sediment 

distribution.   Starting from the general equations derived by Holyer and Huppert (1980), 

Sutherland et al. (2004) obtained simpler expressions for the propagation speed and 

height of the intrusion. They also derived approximate analytical solutions using 

perturbation theory.  Their theoretical model agreed very well with experiments for the 

case in which the density of the lock fluid was equal to the mean density of the ambient 

fluid, even if the depths of the two layers of ambient fluid were not equal.  The model 

underpredicted the front velocity in the other cases. 

Faust & Plate (1984) investigated the effects of the Grashof / Reynolds number 

(800<Ref<30,000) and the shape of the initial density distribution of the ambient fluid on 

the propagation of a symmetrical IC created by a lock release of saline fluid in a water 

tank.  The case of a sharp density interface between two layers of constant-density 

ambient fluid and that of a mildly (linearly) stratified interface were considered.  Viscous 

effects where observed to be important only below Ref~2,000.  The case of a relatively 

sharp interface was also investigated experimentally by Britter and Simpson (1981).  

Both investigations found that the front speed and the intrusion height increase with the 

decrease of the interface thickness.  If the ratio between the interface thickness and the 

intrusion height was less than 0.2, they found that the front velocity becomes independent 

of the interface thickness.  De Rooij et al. (1999) performed experiments with saline and 

particulate intrusions at Reynolds numbers of about, Ref=4,000.  It was observed that the 

interfacial waves generated by the saline intrusions were weaker for intrusions that were 

more symmetrical.  The propagation of an IC into a two-layer fluid was studied 

experimentally by Sutherland et al. (2004) for configurations in which the depths of the 

two layers were not equal and / or the density of the lock fluid was different from the 

mean density of the ambient mass of fluid in the tank.  For non-symmetric cases, they 
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found that leading waves can be excited in front of the current head at the interface 

between the two layers.   

Lowe et al. (2002) used digital Particle Tracking Velocimetry (PTV) methods to 

study the structure (e.g., velocity distribution, stability of the interface) of a doubly-

symmetric IC (3,700<Ref<14,500) created by a lock-exchange flow in a tank.  They 

found that the velocity in the head region was almost uniform and equal to the front 

velocity.  Their experiments showed that the fluid velocity was non-uniform inside the 

dissipative wake region and its maximum speed was around 50% higher than the front 

velocity.  The velocity in the downstream part of the tail region was slightly higher than 

the front velocity.  The presence of an internal flow within the IC was also predicted by 

Simpson and Britter (1979) based on experiments that produced GCs propagating on no-

slip surfaces.  Lowe et al. (2002) argued that the role of the faster internal flow is to 

supply the flux of lock fluid lost, mainly in the wake region, by mixing with the ambient 

fluid.   

Amen and Maxworthy (1980) studied the case of an intrusion propagating into a 

mildly stratified fluid.  More recently, Mehta et al. (2002) studied experimentally the case 

of a three-layer system in which the middle layer was a stratified layer in between two 

constant density layers.  The experimental conditions ensured that the intrusion 

propagated along the middle layer.  They found that if the thickness of the stratified 

middle layer exceeds a certain critical depth, the IC decelerates and eventually stops. This 

is caused by the loss of momentum due to the generation of large-amplitude trailing 

internal waves and a double-humped solitary wave in front of the head.  Gravity currents 

intruding along the interface between a uniform upper layer and a linearly stratified lower 

layer were studied experimentally by Flynn & Sutherland (2004). 

Hartel et al. (2000) used 2D DNS (Gr=106-109) to study the case of a bottom 

propagating current over a slip surface in which the lateral boundaries were situated far 

from the lock gate position.  This flow can be considered similar to the one present in a 
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doubly-symmetric IC before the return flow reflects off the lateral end wall.  They found 

that the foremost point of the current was located on the slip boundary, in contrast to the 

case of bottom GCs propagating over a no-slip surface.  They found that the position of 

the formation of the first KH billow behind the head in their simulations was in good 

agreement with the one observed in the intrusion experiments of Lowe et al. (2002) but, 

because of the 2D constraint, the KH billows remained coherent for a much larger time 

behind the head region.  The front speed in the high Reynolds number simulations was 

also correctly predicted.  The shape of the current in the head region was similar to 

Benjamin’s (1968) prediction.  From the review, it appears that no highly resolved, 3D 

eddy resolving simulations (DNS or LES) are available for intrusion currents.    
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Figure 2.1. Sketch of an infinite-volume lock-exchange flow in a channel. 
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a)  

b)  

c)  

Figure 2.2. Sketch of a finite-volume lock-exchange flow in a channel. a) gravity current 
immediately after the gate is removed with associated front velocity of denser 
fluid and bore velocity of lighter fluid; b) gravity current during the slumping 
phase after the bore has been reflected; c) gravity current during the self-
similar inviscid phase after the bore has caught up the front. 
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CHAPTER 3  

NUMERICAL SOLVER 

The numerical solver is a finite-volume non-dissipative DNS / LES code.  A 

detailed description of the code and computational technique is available in Pierce & 

Moin (2001) along with a validation study (see also Pierce & Moin, 2004).  Additionally, 

detailed validation of the code for 3D LES simulations of cavity flows with or without an 

incoming turbulent flow is described in Chang et al. (2006).  The conservative form of 

the Navier-Stokes equations is integrated on non-uniform Cartesian meshes.  A semi-

implicit iterative method that employs a staggered conservative space-time discretization 

is used to advance the equations in time while ensuring second order accuracy in both 

space and time.  A Poisson equation is solved for the pressure using multigrid.  The 

algorithm discretely conserves energy, which ensures robustness at relatively high 

Reynolds numbers in the LES regime. This is essential for simulations conducted at very 

high Grashof numbers using a dynamic model that maintains the subgrid-scale (SGS) 

viscosity and diffusivity at a minimum level, compared to the classical Smagorinsky 

model.  All operators are discretized using central discretizations except the convective 

terms in the scalar transport equations for which the QUICK scheme is used.  The code is 

parallelized using MPI.  

The focus of the present study is only on the case of small density differences 

between the lock fluid and the ambient fluid such that the Boussinesq approximation is 

valid.  The fluid density is assumed to vary linearly with the non-dimensional 

concentration C.  The Navier-Stokes and transport equations for the fluid scalar property 

(e.g., salinity, temperature) that determines the local value of the density are made 

dimensionless using the channel half depth, h, and the buoyancy velocity, hgub '= , 

( minminmax /)(' CCCgg −= , where g’ is the reduced gravitational acceleration, maxC , minC  

are the maximum and minimum concentrations / densities in the domain, g is the 
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gravitational acceleration).  The time scale used in the discussion of the results is t0=h/ub.  

The non-dimensional concentration is defined as )/()( minmaxmin CCCCC −−= .  The 

governing momentum (i=2, vertical) and concentration transport equations can be 

rewritten using two dimensionless parameters, the Grashof number, ( )2vhuGr b= which 

is the ratio of the buoyancy and viscous forces and the Schmidt number, Sc = ν/κ, which 

is the ratio of the molecular viscosity, ν, to the molecular diffusivity, κ.  The Reynolds 

number (Re= Gr ) which is sometimes used to characterize the gravity current is also 

defined in lock-exchange flows with the buoyancy velocity.  Thus, its physical 

significance is still that of the ratio between buoyancy and viscous forces, as opposed to 

the usual definition as the ratio between inertial and viscous forces.  Simulations in the 

present study assumed a unity value for the Schmidt number.  As demonstrated by Hartel 

et al. (2000a), the value of the Schmidt number is not expected to significantly alter the 

generality of the results.  In the case of LES, due to filtering, the governing equations 

contain the extra SGS terms.   
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where p is the dimensionless pressure.  The equivalent Reynolds numbers in the 

momentum and concentration equations are equal to Gr and Gr Sc, respectively.  No 

assumptions are needed on the value of the turbulent Schmidt number as the dynamic 

procedure (Pierce & Moin, 2001) directly estimates, based on the resolved velocity and 

concentration fields, the value of the SGS diffusivity.  The dynamic procedure has also 

the advantage that it does not need extra corrections to account for buoyancy or rotation 
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effects on the resolved velocity and concentration fields. The need to use empirical near-

wall viscosity corrections (e.g., Van Driest damping functions) is avoided when using the 

dynamic model as the governing equations are integrated up to the wall ( 1~1
+∆n , 

where ντ /nun =+ , uτ is the friction velocity) and the model coefficient decays 

automatically to zero as the solid boundary is approached. 

Most of the 3D numerical simulations were run on 40 processors of a Xeon PC 

cluster with Myrinet.  A complete simulation required around 30,000 CPU hours.  The 

2D simulations were run on 4 or 8 processors.  The total CPU time was around 500 CPU 

hours per run.  The code was found to scale practically linearly with the total mesh size 

over this number of processors.   
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CHAPTER 4  

2D LES SIMULATIONS 

4.1 DNS/LES Of Lock-Exchange Flow In An Infinite 

Channel 

The main objective of this chapter is to evaluate the accuracy of 2D LES 

simulations in predicting the structure (spanwise-averaged) of a gravity current at high 

Grashof numbers and some integral quantities (e.g., front speed, bore velocity) related to 

its evolution.  The use of 2D simulations for simulation of GC flows is limited by two 

main flow phenomena that cannot be accounted in these simulations.  The first one is 

vortex stretching and the associated break of the 2D KH billows into small scale 

turbulence.  The second one is the formation of the lobes and clefts at the front.  While 

acknowledging these limitations, evidence will be shown that 2D highly resolved 

simulations can still predict some important quantities accurately, at least over the initial 

stages of the evolution of the gravity current. 

To validate the code for gravity current flows, 2D LES and DNS simulations that 

correspond to the conditions considered in Härtel et al. (2000) were performed.  Two 

simulations were conducted corresponding to Gr=1.25×106 and 2×109 with the top and 

bottom surfaces simulated as no-slip.  The length of the computational domain was 25h 

(h = 2 is the nondimensional distance between the walls) which is long enough to prevent 

any interaction of the current with the channel ends for t<20h/ub.  The grid size was 

2048×160 in both DNS and LES simulations which contrasts with the grid size of 

8192×1200  used by Härtel et al. (2000) for a 2D DNS simulation at the higher Grashof 

number (Gr = 2.00×109). The grid size in the streamwise direction was 0.01h everywhere 

except near the ends of the domain where it was stretched to 0.03h.  The grid size in the 

vertical direction away from the walls was around 0.02h.  Near the walls the grid size was 
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reduced to 0.00075h.  Assuming conservatively that uτ/Uf~0.04 the wall normal grid size 

at the wall in wall units is equivalent to ∆n+~1 for the higher Grashof number. 

At the lower Grashof number (Gr = 1.25×106) both LES and DNS simulations 

were conducted as the mesh was fine enough to conduct well resolved DNS.  The 

physical Reynolds number was only Ref = Uf(h/2)/ν=648. The results from the DNS and 

LES simulations were practically identical.  This was expected as the LES module uses 

the dynamic model to estimate the sub-grid scale viscosity and diffusivity.  This model 

has the property that it predicts practically zero values (couple of orders of magnitude 

lower than the molecular viscosity/diffusivity) if the grid is fine enough to resolve the 

small scales up to the dissipation range.   

Fig. 4.1 compares the results of the present simulations to the corresponding 2D 

DNS of Härtel et al. (2000) at different stages of the evolution of the gravity current 

(t=0t0 to t=20t0, where the time scale is t0=(h/2)/ bu ).  The KH billows are generated 

behind the gravity current front, as the front advances.  Very good agreement is observed 

with regards to the number, shape and position of the KH billows and the position of the 

front at different stages of the evolution of the gravity current (t=0t0 to t=20t0) between 

the present simulations and the corresponding 2D DNS of Härtel et al. (2000a).  The 

good agreement observed in Fig. 4.1 for the front position is consistent with the accurate 

prediction of the Froude number defined with the head velocity ( )2/('/ hgUFr f= ) 

which is estimated at 0.58 in the present 2D LES simulations, practically identical to the 

value obtained by Härtel et al. (2000a) and various experimental investigations (see Fig. 

4.4).      

Instantaneous concentration contours at various time instances in the higher 

Grashof number (Gr=2.00×109) LES simulation (Fig. 4.2) show the presence of much 

smaller 2D eddies that disturb the large KH billows.  As opposed to the lower Grashof 

number simulation, the contours of these billows is very far from smooth indicating the 

fact that even in a 2D simulation these large eddies are breaking into smaller ones.  
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Though this process is observed in reality, the mixing in the interface region behind the 

front is taking place much slower because the only small scale instabilities allowed in the 

present simulations are 2D while in reality 3D instabilities are present.  These 3D 

instabilities are very efficient at enhancing local mixing and thus inducing a faster decay 

of the coherence of the large KH vortices behind the two fronts.  As the current advances, 

due to the initial presence of the small scale disturbances around the lock position, the 

symmetry of the current is more and more lost (e.g., especially for t>15t0 in Fig. 4.2) and 

the flow becomes turbulent, though the turbulence is constrained to remain 2D.  This is in 

contrast to the low Grashof number simulation where the current was observed to remain 

practically symmetrical during the whole simulated period.    

In spite of the absence of the transition to three-dimensionality in the LES 

simulation, the front velocity is accurately predicted.  The associated Froude number is 

0.65, practically identical to the value obtained in the 2D DNS simulation of Härtel et al. 

(2000a) on a much finer mesh (see Fig. 4.4).  The predicted front Reynolds number is 

close to 30,000 (see Table 4.1) which indicates that the flow is turbulent at least in the 

region immediately behind the two fronts.  This is also confirmed by the contours of the 

non-dimensional sub-grid scale viscosity, νt/ν at t=20t0 in Fig. 4.3 which show the 

presence of large regions where νt/ν is of order of unity, particularly around the KH 

billows and the interface.  Contour plots of the instantaneous sub-grid scale diffusivity 

(not shown) are relatively similar because Sc=1 but not identical as the dynamic 

procedure for the sub-grid scale diffusivity is applied on the concentration equation rather 

than momentum.  Though these instantaneous values may not appear large compared to 

the eddy viscosity values obtained from a RANS model, they are essential in providing 

the extra local dissipation needed near grid scale level to obtain a converged solution on a 

mesh sensibly coarser than DNS requirements. 

Fig. 4.5 provides more details on the evolution of the front head position (xf) with 

time starting at the moment when the lock gate was released.  It is observed that for t>2t0 
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the front position varies linearly with time in log-log scale.  The slope of 1 in the plot in 

Fig. 4.5 confirms the fact that the front velocity is constant for t>2t0 regardless of the 

value of the Grashof number.  The accurate prediction of the front velocity by the 2D 

simulations is believed to be due to the fact that the real flow in the front regions is quasi 

2D (e.g., main structures are the KH billows which are practically 2D in the formation 

region), and not much affected by the 3D flow structures that are observed to develop 

behind them.      

The streamlines in a moving frame of reference in Fig. 4.6 indicate that, for both 

the high and low Grashof number simulations, some of the lighter fluid is overrun by the 

front while the rest travels above the front.  This is because the stagnation point is located 

at a point that is below and behind the foremost part (nose) of the front in a frame of 

reference moving with the front velocity.  Table 4.1 also indicates the height of the nose 

and that of the stagnation point, ∆yn/h and ∆ys/h respectively.  The corresponding values 

in the 2D DNS simulations of Härtel et al. (2000a) are shown in parenthesis.  The region 

of unstable stratification in between the interface delimited by the nose and the stagnation 

point of the current, and the bottom is thought (Härtel et al., 2000a) to be at the origin of 

the lobe and cleft instability observed experimentally and in the 3D DNS at Ref~750 of 

Härtel et al. (2000a).  The ratio of the light fluid flux underneath the front, uV& , to the 

expected incoming flux of light fluid, fUSV 00 =&  (in 2D the incoming flow area per unit 

width is S0 =h) is summarized in Table 4.1 and characterizes the strength of the instability 

due to the sheet of light fluid overrun by the front.  Accurate prediction of this ratio is 

significant because using stability analysis Härtel et al. (2000a) have shown that the 

region of unstable stratification between the nose and the stagnation point, and not the 

buoyancy-induced rise of the sheet of light fluid overrun by the front, is the main cause of 

the lobe-and-cleft instability at the front.  The predicted ratio decreases from 1.18% in the 

lower Grashof number simulation to about 0.32% in the higher Grashof number 

simulation.  The values predicted by the 2D DNS simulations of Härtel et al. (2000) of 
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1.25% and 0.34% (Table 4.1) are comparable to present simulation results at both 

Grashof numbers.    

4.2 LES Of Lock-Exchange Flow In A Channel With A 

Lateral Wall 

The lock exchange flow corresponding to the laboratory experiments carried out 

by Hacker et al. (1996) is simulated using 2D LES.  The bottom-propagating denser lock 

fluid which in all three experimental cases (A, B and C) considered by Hacker et al. 

(1996) extends up to the free surface is released into a less dense ambient fluid by the 

rapid extraction of a gate separating the two fluids as shown in Fig. 2.2a.  The focus of 

the analysis of the gravity current evolution is on cases B and C, but present validation 

results related to the prediction of the main quantities characterizing the development of 

the current for all three cases.  Additionally a simulation (case C-HI) at a much higher 

Grashof number (Gr=1012, Ref = Uf(h/2)/ν ~245,000, h/2 is used because it characterizes 

the mean height of the current in a channel of depth h) was performed to test the 

robustness of the model to simulate currents at Grashof numbers outside the range 

typically studied using DNS and even outside the usual range at which laboratory 

experiments are performed and to investigate the effect of Grashof/Reynolds number on 

the development of the current.   

The Reynolds numbers in cases A, B and C are in the range of 7,000 to 20,000 in 

the slumping phase, so the flow, at least in the front region, is turbulent.  In agreement 

with the experimental setup (Fig. 2.2), no-slip boundaries were specified on the bottom 

wall and on the end wall while the top was treated as a slip boundary (zero shear).  A 

convective outflow boundary condition was used at the right extremity of the 

computational domain that allows coherent structures to exit the domain in a time 

accurate way.  The size of the grid was 3072×192 in all three simulations, the length of 

the computational domain varied between 9h and 18h.  The typical size of a cell is 
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0.0025h in streamwise direction and 0.005h in vertical direction.  Near the right boundary 

the streamwise cell size increases to 0.025h.  Near the end and bottom walls the cell size 

in the wall-normal direction decreases to ∆n=0.0005h.  In wall units assuming 

conservatively uτ/Uf~0.04 this translates into ∆n+~1 for case B.  The other two cases 

should be slightly better resolved.  In the case C-HI simulation in which the aspect ratio 

of the initial lock fluid is the same as in case C, the mesh size away from the solid 

boundaries was very similar to the one used in case C, however the mesh was refined 

near the end and bottom walls to ∆n=0.00002h to insure ∆n+~1 at the walls.  The mesh 

size was 3072×240. 

Depending on the value of the initial aspect ratio of the denser lock 

fluid, oxhR = (xo is the initial lock length), the evolution of the gravity current is 

observed to be very different.  Table 4.2 summarizes the parameters of the four 

simulations including the total length of the computational domain L and the initial aspect 

ratio R along with the predicted and measured values of the Reynolds and Froude 

numbers during the slumping phase when the front velocity Uf is constant.  Figures 4.7 

and 4.8 visualize the evolution and structure of the gravity current using concentration 

isocontours as predicted by the simulations (cases B, C and C-HI) along with the 

corresponding experimental results reported in Hacker et al. (1996) for cases B and C.  

The position of the reflected bore is denoted xb in these figures.  In case C it is possible to 

follow the evolution of the gravity-current in the experimental setup until it approaches 

the self-similar phase.  In this case, the higher initial aspect ratio R (shorter lock length) 

causes the lighter fluid to reflect from the end wall much earlier compared to cases A and 

B (e.g., compare Fig. 4.7 and Fig. 4.8).   

It is observed that the flow in the initial moments after the lock release (e.g., 

compare frame a in Figs. 4.7 and 4.8 corresponding to t<2t0, t0=h/ bu ) is similar in all 

three cases, in the sense that a gravity current of denser fluid moving downstream (right) 

develops at the bottom of the domain.  The head region of the current becomes unstable 
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due to the amplification of the KH instabilities on the interface between the denser and 

lighter fluids, and coherent billow structures are forming.  These billows are clearly 

visible in frames a and b of Fig. 4.7.  The evolution of the density contours in time show 

that in all the cases most of the mixing between the lock fluid and ambient fluid takes 

place in the region behind the front of the current (nose region) where the fluid becomes 

stratified at the interface.   

In the present 2D simulations as the current develops in time, a sharp density 

gradient is maintained at the front while highly coherent KH billows are observed to shed 

from the region just behind the front and then propagate downstream with a speed that 

decays slowly in time (the front velocity is practically constant) while diffusing and 

enhancing the mixing locally.  These structures are not as clearly defined in the 

corresponding experimental results where 3D instabilities have the effect of quickly 

destroying the coherence of these billows while enhancing the small scale mixing inside 

and behind the nose region.  Careful inspection of the structure of the nose region as 

shown by experimental visualizations, particularly the waviness of the top of the nose 

region, suggests that some of the large billows obtained in the simulations are also 

present in the experiments.  The correlation between the crests observed near the current-

ambient fluid interface in simulations and experiments is strong especially for the first 

few eddies behind the front of the current.   

In Case B (Fig. 4.7) the overall shape and structure of the gravity current, 

including the nose region, appear to be reasonably well predicted by the 2D simulations, 

at least over part of the slumping phase.  This is despite the fact that in the experiment the 

gate removal has clearly introduced secondary motions that broke the symmetry of the 

gravity current (see frame a, and also discussion in Hacker et al., 1996).  Analysis of the 

simulation results at the same moment in time (t=1.4t0) shows that the flow is practically 

perfectly symmetric around x/h=1.0 (the gate position) except for the regions very close 

to the bottom wall and free surface, where different boundary conditions (no-slip vs. slip) 
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were used.  In this respect numerical simulations have the advantage of allowing ‘ideal’ 

initial conditions to be specified.  However, by t=4.6t0 (frame c) the overall shape and 

length of the nose region are quite similar in experiment and simulation.  A large billow 

is present at the rear of the nose region in frames c to e.  If one follows the formation of 

this billow one can observe that the original KH eddies are energized as the bore reflected 

by the end wall is catching the rear of the gravity current nose at the location of these 

eddies.  The main effect is the formation of this large structure and local enhancement of 

mixing.  Some of the denser fluid from the rear of the nose is in fact drawn upwards into 

this structure as the bore is passing.  Once the bore has past, this structure practically 

detaches from the gravity current in the 2D simulation.  In frames d and e one can clearly 

observe that the region of high mixing corresponding to the large eddy at the back of the 

nose region situated around x/h=1.0 is well predicted by the simulation.  The other region 

characterized by high mixing (second large billow from the left in frames d and e) is 

situated in the experiment at x/h~2.7 while in the simulation its position is around 

x/h~2.0.     

For case C (Fig. 4.8), where experimental visualizations are available until the 

end of the slumping phase, one can see that the structure of the gravity current is fairly 

well captured at the earlier stages of the slumping phase (frames b to e).  In the 2D 

simulations the KH billows are observable not only on the top of the interface where they 

form but also at large distances behind the nose where they partially maintain their 

coherence.  During this process they lose part of their kinetic energy and the velocity at 

which they are convected downstream decreases toward zero.  In reality these structures 

will loose their two-dimensionality fairly rapidly and eventually break into 3D turbulence 

producing the relatively mildly stratified region behind the nose observable in the 

experiments (frames g to j).  As the reflected lighter fluid begins to catch up with the 

gravity current head (frame f), the KH billows break off the back of the head in the 
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simulations.  For t>10.4t0 (frames h to j), as the bore of lighter fluid catches the head of 

the gravity current, significant mixing occurs just behind the front. 

Comparison of the corresponding frames in Fig. 4.8 shows that qualitatively the 

evolution of the gravity current in case C-HI is similar to the one in case C.  The structure 

of the two currents is initially very similar (frame a) but differences in their subsequent 

evolution become noticeable for t>2.7t0.  The front speed is slightly higher, as observed 

from comparison of the front positions in the two simulations, and the diffusion of the 

large KH billows that separate behind the nose region as the bore passes by is faster in 

case C-HI.  Interestingly, for t>10.4t0 (frames h to j) the KH billows in case C-HI appear 

to be larger and to slightly move away from the bottom after the bore has overtaken them.     

Results in Figures 4.7 and 4.8 suggest that the front position is accurately 

predicted at all times in the case B and case C simulations.  The corresponding range of 

Froude numbers ( hgUFr f '/= ) defined with the front velocity varies between 0.44 

and 0.45 during the slumping phase for cases A, B and C (see Table 4.2) which compares 

reasonably well with the experimental values, Fr = 0.45/0.46±0.01.  For the Reynolds 

number, the values from the simulations are Re = 6,820, Re = 19,730, and Re = 10,755 

which are reasonably close to the experimental values of Re = 7,000, Re = 19,700, and 

Re = 11,000 for case A, B, and C respectively.  For case C-HI the predicted value of the 

front velocity during slumping phase is 0.48 (Re~245,000) which corresponds to a 6-7% 

increase relative to case C.   

The propagation of the bore in the slumping phase is difficult to infer directly 

from the concentration contours of the current because the bore propagates into the 

mixing layer created by the advancing head region of the gravity current moving away 

from the end wall.  A more accurate way of determining the bore position is to look at the 

concentration vs. time variation on a line at a certain distance from the bottom.  Such a 

plot is shown in Fig. 4.9 for case C at a relative distance of d/h=0.1 from the bottom.  In 

this figure, one can observe the presence of a dark region in the form of a triangle with a 
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very sharp angle corresponding to the intersection of the trajectories followed by the front 

and the bore at that distance from the bottom.  As these trajectories are close to straight 

lines, one deduces that the associated front and bore velocities are constant.  The slope of 

the bottom border (red line) corresponds to the speed of the front while the slope of the 

top border (yellow line), which sometimes cuts through the billows (observe the dark 

streaks present above the yellow lines), corresponds to the speed of the reflected bore.  

One can see that the slope, relative to the time axis, of the red line is slightly higher than 

the one of the yellow line confirming that the bore velocity is higher than the front 

velocity.  Table 4.3 summarizes the predicted values of the front and bore velocities.    

For all simulations the ratio of Ubore/Uf is between 1.35 and 1.4, which agrees well 

with the experimental observed range (Rottman and Simpson, 1983).  It should be noted 

that it appears that the increase in the Grashof number (compare case C and case C-HI 

results) left unchanged the ratio of Ubore/Uf (Table 4.3) though, as expected, the predicted 

front and bore velocities are larger.  Examining case C in detail (Fig. 4.9), it can be 

observed that the intersection of the two trajectories takes place inside the computational 

domain at x/h~5.9, t~12.5 (Fig. 4.9) corresponding to a nondimensional streamwise 

length of l~9.5, ( ( ) oof xxxl −= , xf is the front position).  The values of l obtained for 

cases A (l=7.8) and C (l=9.5) are consistent with experiments and theory (Rottman and 

Simpson, 1983).  The length of the domain in case B was too short to capture the 

transition to the inviscid self-similar phase.  In Fig. 4.9, once the bore overtakes the front, 

the border between the ambient fluid and the gravity current curves up, meaning the 

velocity of the front of the gravity current starts decaying in time.   

This is made clearer in Fig. 4.10 which shows the front position as a function of 

time in log-log scale for cases B, C and C-HI.  As expected, during the slumping phase 

all curves have a practically constant slope equal to 1.  The slope of 1 in the l-t plot 

corresponds to a constant front velocity.  As the bore overtakes the front, the slope of the 

trajectory l=l(t) decreases over a relatively short time period corresponding to the 
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transition between the two phases before regaining a fairly constant value close to 2/3 

(this slope corresponds to a velocity decay in time proportional to t-1/3) in the case C and 

case C-HI simulations.  For these cases, the simulations were run until approximately 

35t0, well past the start of the inviscid phase.  The measured slope over the inviscid phase 

was 0.6 for case C and 0.64 for case C-HI.  These values are close to the analytical value 

(2/3) obtained from theory indicating that even a 2D simulation can capture some of the 

main flow characteristics in the self-similar phase.  The slightly higher velocity decay 

observed for case C is believed to be due to the fact that the flow at the head of the 

current appears to be more mixed compared to the experiment once the bore overtakes 

the front.  This causes a smaller buoyant force at the interface between the head and the 

light fluid in front of it and thus eventually into a faster decay of the front velocity.    

It is also interesting to look closer at the dynamics of the flow immediately after 

the gate is removed.  Case C is again chosen for discussion.  It has already been shown 

that after a short initial adjustment phase, the front velocity becomes practically constant 

(start of the slumping phase).  The duration of this initial phase can be inferred from Fig. 

4.11, where the position and velocity of the front (continuous line) and initial bore 

(dashed line) propagating toward the end wall are plotted, as being equal to ∆t=1.8t0.  At 

this time the value of Uf is very close to the asymptotic value of 0.45 hg ' and the 

variation of xf is practically linear.  During this time the bore starting at x=x0 moves 

toward the end wall (x=0).  At times very close (t<0.3t0) to the initiation of motion, the 

influence of the end wall is not felt by the forming bore and the flow is practically 

symmetrical with respect to x=x0 meaning that the front and the bore travel at same speed 

in opposite directions (the two lines are practically superimposed).  Though the symmetry 

is lost for t>0.3t0 the evolutions of the front and bore are still close until t~0.75t0.  In the 

experiments due to the physical removal of the lock and the associated motions induced 

locally in the lock area, the symmetry of the flow is lost once the gate was removed.  

While the front continues to develop as in a channel of infinite length, the bore movement 
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becomes affected more and more by the end wall and the bore velocity decays sharply for 

t>0.85t0 to become practically zero at t~1.65t0 when the bore is reflected by the end wall.       

The streamline patterns in a coordinate system advancing with the front velocity 

(Fig. 4.12) indicate that for gravity currents developing in channels with a lateral wall, 

the foremost point (nose) is not a stagnation point, similar to the case when the current 

was developing in an infinite channel (Fig. 4.6).  This is found to be true not only over 

the slumping phase when the physics of the two flows is very similar (Fig. 4.12a), but 

also over the inviscid phase when the flow beneath the nose but outside the current head 

becomes more mixed (Fig. 4.12b).  The ratio of the light fluid flux underneath the front, 

uV& , to the expected incoming flux of light fluid, 0V& , is close to 0.49% during the 

slumping phase and equal to 0.54% at t=22.4t0 in the self-similar phase.  For case C-HI 

the ratio is even smaller, the corresponding values are 0.10% and 0.11%, respectively.  

This make us to expect the lobe-and-cleft instability in the case of finite channel lock 

exchange gravity currents to be driven by the same mechanism (unstable stratification 

region between the nose and the stagnation point) identified for the case of infinite 

channel gravity currents.  

The contour plots of the non-dimensional sub-grid scale diffusivities, αt/ α at 

t=16t0 for case C and case C-HI in Fig. 4.13 show that at these high Grashof and Schmidt 

(Sc=600) numbers the sub-grid scale diffusivity controls the dissipation at the grid scale 

level in the concentration equation.  The instantaneous values of the ratio of αt/α are as 

high as 100 in case C and up to 1000 in case C-HI.  As expected, the largest values are 

predicted around the KH billows and the interface.  Thus for the parameters considered in 

these simulations the sub-grid scale model in LES is expected to have a non-negligible 

impact on the results.  In this regard the dynamic model has several advantages over the 

classical constant coefficient Smagorinsky model as no empirical damping functions have 

to be used near the wall and the model predicts very small values of the sub-grid scale 

viscosity and diffusivity in regions where the flow is not turbulent but the mean shear is 
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non-zero.  This is important especially in the relaminarization region behind the current.  

Also, as the dynamic model is overall much less dissipative than the constant coefficient 

version, less damping occurs on the large scales present in the flow, thus one expects 

more accurate predictions especially at high Grashof and/or Schmidt numbers.          

4.3 Summary 

The present simulations demonstrate that 2D LES with a dynamic sub-grid scale 

model can capture several important aspects of lock-exchange flows in infinite channels 

and in channels with a lateral end wall at moderate and large Grashof and Reynolds 

numbers and at Schmidt numbers as high as 600.  For these flow parameters even 2D 

non-dissipative DNS simulations are very expensive.  The largest Grashof number in the 

simulations was equal to 1012.  At this Grashof number it was shown that the flow inside 

the head part of the current is highly turbulent and the effects of the sub-grid scale model 

are very important both in the momentum and scalar transport equations.   

Over the range of Grashof numbers where both 2D DNS and LES was attempted, 

it was shown that the present energy conserving non-dissipative (momentum) code can 

predict the main aspects of the flow at levels comparable to those of 2D DNS simulations 

on much finer meshes.  The main limitation of 2D simulations is related to the prediction 

of the development of the KH billows in the later stages of decay.  If in experiments it is 

observed that the KH billows do not preserve their structure across the width of the 

channel and break relatively rapidly into smaller 3D structures, in the 2D simulations in 

which the 3D instabilities are not allowed to develop these structures maintain their 

coherence for a much longer time.  Still, the overall structure of the nose region was 

found to be similar to experiment at least over the early stages of the slumping phase 

(e.g., the size and shape of the main 2-3 large billows shed behind the front is well 

reproduced in the simulations in finite length channels).   
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The constant value of the front velocity during the slumping phase and the 

associated Froude and Reynolds numbers were correctly predicted for both the infinite 

channel and the finite channel simulations.  The ratio between the predicted bore and 

front velocities for the finite channel simulations was found to be in the range of 1.35-1.4 

and the transition toward the self-similar phase was predicted to take place at around 7-10 

initial lock lengths, within the experimental observed ranges (e.g., see Rotman and 

Simpson, 1983).  It was shown that an increase by more than one order of magnitude in 

the Reynolds number left the ratio of the bore to the front velocity unchanged though, as 

expected the actual velocities were slightly higher for the current with a higher Reynolds 

number.  The simulations correctly predicted the evolution of the front trajectory and 

velocity during the inviscid self-similar phase, in particular the velocity decay with t-1/3.  

It was found that the structure of the nose region in a frame of reference moving with the 

front velocity was similar in the infinite channel simulations and in the finite channel 

simulations not only during the slumping phase but also during the inviscid phase.  The 

ratio between the light fluid flux underneath the front uV&  to the expected incoming flux 

of light fluid, 0V& was found to be around or less than 1% for Gr>108, which suggests that 

the unstable stratification region between the nose and the stagnation point is the main 

cause for the lobe and cleft instability observed in experiments and in 3D DNS 

simulations at lower Reynolds numbers.         
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Table 4.1.Details of the gravity current simulations in channels with no lateral walls.  

Case Gr Ref Fr ∆yn/h ∆ys/h Vu/V0 (%) 

Low-Gr 1.25×106 648 0.58 0.26 (0.26) 0.067 
(0.065) 

1.18 (1.25) 

High-Gr 2.00×109 30,000 0.65 0.11 (0.11) 0.021 
(0.018) 

0.32 (0.34) 

Note: Values in brackets are the results of Härtel et al. (2000). 

Table 4.2. Details of the lock-exchange simulations in channels with a lateral wall.  

Experiment Simulation Case Gr L/h Aspect ratio,  
R=h/x0 Ref Fr Ref Fr 

A 9.6×108 18 0.67 7,000 0.45±0.01 6,820 0.44 

B 7.7×109 9 1.00 19,700 0.45±0.01 19,730 0.45 

C 2.3×109 13.483 1.78 11,000 0.46±0.01 10,755 0.45 

C-HI 1.0×1012 13.483 1.78 - - 245,000 0.48 
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Table 4.3. Comparison of bore and front velocities during slumping phase for simulations 
in channels with a lateral wall. 

Case Ubore/ hg '  Uf/ hg '  Ubore/Uf 

A 0.61 0.44 1.39 

B 0.61 0.45 1.35 

C 0.62 0.45 1.35 

C-Hi 0.65 0.48 1.35 
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a)

b)  

Figure 4.1. Density contours corresponding to 2D lock-exchange flow in an infinite 
channel with no-slip walls at Gr = 1.25 x 106. Nondimensional time from top 
to bottom is t/t0=5, 10, 15 and 20. (a) Flow field of present 2D LES. (b) Flow 
field of 2D DNS of Härtel et al. (2000). 

 



www.manaraa.com

 

 

43

 

Figure 4.2. Density contours corresponding to 2D lock-exchange flow simulation in an 
infinite channel with no-slip walls at Gr = 2.00 x 109. Nondimensional time 
from top to bottom is t/t0=5, 10, 15 and 20. 
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Figure 4.3. Instantaneous non-dimensional sub-grid scale viscosity contours at t/t0 = 20 
for 2D LES of lock-exchange flow in an infinite channel.  The line 
corresponds to the current interface.  
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Figure 4.4. Froude number of the front of the gravity current, Fr, as a function of the 
Grashof number, Gr. Red squares correspond to present 2D LES. Open 
symbols correspond to DNS simulations of Härtel et al. (2000). Experimental 
data: ■, Keulegan (1957); ●,Simpson & Britter (1979);▲ Rottman & Simpson 
(1983);▼, Keller & Chyou (1991). 1/√2 is the theoretical result of Benjamin 
(1968). 
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Figure 4.5. Front position vs. time in log-log scale for infinite channel simulations.  
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Figure 4.6. Comparisons of the positins of the stagnation point and nose of the current 
head in a moving frame of reference for infinite channel simulations. 
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Figure 4.7. Evolution of gravity current for case B. Density contours at subsequent non-
dimensional front positions, l=(xf-x0)/x0, and simulation times, t; (a) l = 0.60, 
t=1.4 (b) l = 1.11, t=2.4 (c) l = 2.10, t=4.6 (d) l = 2.56, t=5.6 (e) l = 3.08, 
t=6.6.  

Experiment Simulation 
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Figure 4.8. Evolution of gravity current for case C experiment (left), case C LES (center) 
and case C-Hi LES (right). Density contours at subsequent simulation times, 
t/t0; (a) t/t0=1.7 (b) t/t0=2.7 (c) t/t0=3.7 (d) t/t0=4.6 (e) t/t0=5.6 (f) t/t0=6.6 (g) 
t/t0=8.6 (h) t/t0=10.4 (i) t/t0=11.6 (j) t/t0=12.4. 
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Figure 4.9. Evolution of density with time along the x axis for Case C. Distance from the 
bottom is d/h = 0.1. 
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Figure 4.10. Front position vs. time in log-log scale for finite-channel simulations. 
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Figure 4.11. Position and velocity of the gravity current front and bore (before reflection 
at the end wall) for case C. 
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a)                                                                    b)   

Figure 4.12. Structure of the head of the gravity current and comparisons of the positions 
of the stagnation point and nose in a moving frame of reference for finite-
channel simulation (case C) during a) slumping phase, t = 4.6t0; b) inviscid 
self-similar phase, t = 12.4t0 

∆ys ∆yn ∆ys 
∆yn 
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a)  

b)  

Figure 4.13. Instantaneous non-dimensional sub-grid scale eddy diffusivity contours at t 
= 16t0 for 2D LES of lock-exchange flow in a finite channel: a) Case C, b) 
Case C-Hi. The line corresponds to the current interface. 
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CHAPTER 5  

3D LES SIMULATIONS OF INFINITE-VOLUME LOCK-EXCHANGE FLOWS 

5.1 Simulation Setup 

The 3D LES simulations (see Table 5.1) conducted at Gr=1.25×106 

(Re= Gr =1,118) and Gr=2×109 (Re=44,721) are referred to as LGR and HGR, 

respectively.  Some comparisons with 2D simulations conducted at the same values of the 

Grashof number are also discussed.  The top and bottom surfaces are simulated as no-slip 

smooth walls similar to the experiments and DNS simulations used for validation.  The 

flow in the spanwise direction is assumed to be periodic.   

The length of the computational domain was L1=48h which is long enough to 

prevent any interaction of the GCs with the lateral boundaries for t<35t0.  The domain 

sizes in all three directions are close to the ones used by Hartel et al. (2000a) in their 3D 

computation at Gr=1.5×106  and allow the development of several lobes and clefts in the 

spansise direction at both Grashof numbers.  The grid size was 2048×80×160 in the 

streamwise, spanwise (domain width L3=3h) and vertical directions (L2=2h), respectively.  

This corresponds to approximately 26.2 million mesh points.  The grid size in the 

streamwise direction was 0.02h everywhere except near the ends of the domain where it 

was stretched to 0.06h.  The grid size in the vertical direction, away from the walls, was 

around 0.04h. The grid size near the walls was reduced to 0.001h.  Assuming 

conservatively that uτ/Uf~0.04, Uf/ub=0.65, the wall normal grid size at the wall is 

equivalent to ∆n+~1 wall unit for the higher Grashof number.  In the spanwise direction, 

the grid size was 0.038h.  This mesh size, especially at the walls, was sufficiently fine for 

the code to resolve the turbulent structures without resorting to wall functions in the HGR 

simulation.  In the 2D simulations the size of the computational domain was (L1,L2) and  

the number of grid points was similar to the one used in a z=constant plane in the 3D 

simulations.   
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The flow field was initialized with the fluid at rest.  The time step in all the 

simulations was equal to 0.001t0, corresponding to a maximum value of the Courant 

number of 0.25.  Most of the solutions were advanced in time until t=35t0.  At that 

moment, the distance between the front of the current and the lateral boundaries was 

larger than 4h, sufficient to ignore their interaction (Hartel et al., 2000a).  The non-

dimensional concentration field was initialized with a constant value of one in one half of 

the channel and a constant value of zero in the other half.  Additionally, a small random 

disturbance was applied on the concentration interface (lock-gate region) at the start of 

the simulations to accelerate the growth of 3D instabilities and transition to turbulence.  

A no-flux boundary condition was assumed for the concentration at the top and bottom 

boundaries. 

5.2 Analysis Of The Evolution Of Gravity Currents And 

The Dynamics Of Coherent Structures 

In the following discussion, the head of the current refers to the part of the GC 

that contains the region behind the front (generally called the energy conserving head 

region) and the dissipative wake region where small KH billows are forming at the 

interface between the two fluids. 

The evolution of the two currents in the LGR 3D simulation is shown in Fig. 5.1a 

at several non-dimensional times (5<t/t0<20) during the slumping phase using spanwise 

averaged concentration isocontours.  Similar results from the HGR 3D simulation are 

presented in Fig. 5.2a.  Instantaneous visualizations of the front and interface regions at 

the two Grashof numbers are shown in Fig. 5.3 at t/t0=5, 10 and 20 using a concentration 

isosurface (C=0.5).  Significant differences are observed in the evolution and structure of 

the lock-exchange flow between the LGR and HGR simulations; this shows that Grashof 

number effects are important between 106 and 109.   
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Over the time period simulated in the LGR simulation, the flow is highly three-

dimensional only in the front region where the lobe and clefts start developing once the 

head has formed at the end of the acceleration phase (see inset pictures in Fig. 5.3).  

Quasi 2D KH interfacial vortices are generated behind the front, as the current advances.  

This can be observed in Fig. 5.3 where the shape of the deformations in the concentration 

isocontour surface clearly shows the presence of KH billows.  The KH vortices that 

populate the interface region between the two currents remain quasi 2D until t~12t0 when 

large scale oscillations develop in the spanwise direction (e.g., see Fig. 5.3c at t~20t0). 

This affects the size of their cores and deforms the axes of these vortices.  Between the 

region just behind the front, where the vortex tubes are originating, and the middle of the 

channel (x/h=0), where the current started, the interfacial vortices appear to extend over 

the whole span of the computational domain.   

Three-dimensional instabilities, as expected, are present and their energy becomes 

larger as the current develops (e.g., compare shape of the interface at t=10t0 and t=20t0 in 

Figures 5.3b and 5.3c).   The spanwise-averaged flow in Fig. 5.1a is practically anti-

symmetric with respect to the original position of the lock gate until t~15t0.  After this 

point, the growth of the 3D instabilities induces a clear loss in symmetry of the evolution 

of the forward and backward propagating currents.  For instance, in Fig. 5.1a at t~20t0 the 

second KH billow behind the backward propagating current is much more coherent and 

its shape is more circular compared to the corresponding billow behind the forward 

propagating current.  The other observation is that the coherence of the KH billows 

remains high, and their dissipation in time is very slow.  Even in the lock-exchange flow 

at t=20t0 (Figures 5.1a and 5.3c) all nine KH billows are clearly observable.  The 

predominant 2D character of the flow is also confirmed by the good agreement observed 

between 2D simulations and the present 3D simulation even in the later stages of the 

evolution of the current.  Figures 5.1b and 5.1c show the density contours corresponding 

to a 2D simulation performed with the same code and to a 2D simulation by Hartel et al. 
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(2000a) at t~20t0.  Though the mixing inside the KH billows appears to be somewhat 

larger in the spanwise averaged contours obtained from the 3D simulation, the head 

shape, front position and the number of interfacial vortices are reproduced correctly by 

the 2D simulation.  The 2D and the 3D spanwise averaged results are in excellent 

agreement for t<15t0.      

In contrast to the LGR simulation, in the HGR case the break in the (anti) 

symmetry of the evolution of the forward and backward propagating currents is observed 

very early. It is clearly distinguishable at t=5t0 in Figures 5.2a and 5.3a.  Still, at that time 

instance the KH billows maintain their predominantly 2D character as observed in Fig. 

5.3a.  However, at t=10t0 (Fig. 5.3b) only the first two to three billows which were just 

shed from the front region, maintain their coherence and are easily identifiable.  The KH 

billows in the middle of the domain rapidly loose their coherence due to their interaction 

with small 3D eddies that are caused by the amplification of the 3D instabilities in the 

interface region and interaction with the turbulent flow in the head region.  These 3D 

structures have enough energy to strongly distort, stretch and eventually break the KH 

billows into smaller turbulent eddies a relatively short time after their formation.  The 

process continues in time, such that at t=20t0 only the first one or two KH billows can be 

identified in Figures 5.2a and 5.3c.  Even the cores of the KH billows in the formation 

region are strongly disturbed in the spanwise direction.  This is due in part to their 

interaction with the lobes and the clefts in the front region.  These interactions are 

comparatively much smaller in the LGR simulation (see Fig. 5.3c).   

The simulation captures the details of the mixing process in the interface region.  

The shedding of the KH billows introduces an important amount of energy into the 

interface region behind the front.  This energy is redistributed once the KH billows lose 

their coherence.  Wisps of heavy or light fluid are displaced by the highly energetic 3D 

structures that resulted from the breaking of the KH billows.  These structures can engulf 

patches of fluid and transport them away from the interface.  Then, by the action of the 
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small scale eddies and dissipation these wisps of heavier / lighter fluid are mixed with the 

surrounding fluid.  Once the current head has passed a certain location there is no source 

of energy toward the large scales around that location.  Eventually the large scales will be 

depleted of energy, but the small scales can still be quite energetic for a relatively long 

time before they dissipate and the flow relaminarizes.  As a result for t>25t0, the flow in 

the mixing layer that forms at the interface, away from the fronts of the two currents, 

does not contain large scale structures.  The end effect is the formation of a stably 

stratified, slightly tilted layer that corresponds to the interface region away from the two 

fronts.  This layer can be observed in the spanwise averaged density contours in Fig. 5.2a.  

The thickness of the mixing layer in the central part of the channel is relatively constant.  

The length of the tilted layer of mixed fluid grows from about 14h at t=24t0 to about 19h 

at t=33t0.  Over this interval the tilting angle relative to the horizontal is about 14º and it 

is slowly decaying with time.    

More details on the concentration distribution within this layer are given in Fig. 

5.4 where the spanwise-averaged concentration profiles across the layer are plotted at 

x/h=0.0, ±2 and ±4.  The concentration profiles were plotted taking into account the 

expected anti-symmetry of the spanwise-averaged fields over the central region of the 

channel.  Indeed for t>27t0 the concentration profiles appear to collapse into a unique 

curve at x/h=0.  The time at which the collapse begins increases with the distance from 

the original position of the lock gate.  For example, at x=2h the time is 29t0.  The 

concentration profile is still symmetric around the C=0.5 value at sections with x/h>0 but, 

due to the tilting, the value of y/h corresponding to C=0.5 is not equal to one except at the 

center of the channel.  However, if the profiles at different sections are superimposed on 

top of each other such that the C=0.5 value occurs at the same point (see Fig. 5.4d), the 

profiles appear to be relatively close to each other and can be approximated using a 

unique hyperbolic tangent function (see dashed line in Fig. 5.4d).       



www.manaraa.com

 

 

60

In contrast to the 3D simulation, the KH billows in the 2D simulation (Fig. 5.2b) 

maintain their coherence for much longer time intervals as 3D instabilities cannot 

develop, stretch the cores of the interfacial KH vortices and eventually destroy their 

spanwise symmetry.  For example, the billows are clearly distinguishable in the frame at 

t=20t0 in the 2D simulation.  Their intensity is high and, though small 2D eddies are 

present, it is the large KH billows that drive the mixing process in the interface region.  

Related to the differences between the 2D and 3D simulations for the HGR case it is also 

interesting to consider the effect of the SGS model on the instantaneous solutions in the 

two cases.  

 The contour plots (x-y plane) of the non-dimensional SGS viscosity, νSGS/ν, at 

t=20t0 are show in Fig. 5.5.  As expected, the largest values of the SGS viscosity and SGS 

diffusivity (not shown) were predicted around the KH billows and the interface.  In the 

3D simulation the region of large SGS viscosity is much more compact around the 

interface between the two currents and the values are higher compared to those predicted 

by the 2D simulation.  This is an indication that the energy in both the unresolved and the 

smallest resolved scales is much larger in the 3D simulation and is consistent with the 

presence of energetic small scale highly 3D turbulent eddies in the interface region as 

observed in Figures 5.3b and 5.3c.  These eddies are of course absent in the 2D 

simulation where the position of the KH billows is easily identifiable in the SGS viscosity 

plot.  The other region of relatively high SGS viscosity values is situated at the head of 

the two currents and spans the whole height of the head suggesting that the flow is 

turbulent in the head region.  The instantaneous values of νSGS/ν are as high as 10 in the 

two HGR simulations.  Though the νSGS values are comparable to the molecular viscosity, 

its inclusion in the model has a very important effect on the numerical stability of the 

Navier-Stokes solver.  Observe also that the dynamic model correctly predicts negligible 

SGS viscosity levels in regions of high, resolved shear, where the flow is not turbulent.  

Thus, on the meshes used in the present simulations and for Grashof numbers around 109, 
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the SGS model in LES is expected to have a certain impact on the results as opposed to 

simulations with Gr~106 where the sub-grid scale contribution is one to two orders of 

magnitude smaller than the molecular viscosity / diffusivity.   

The lobe and cleft structure at the front of the two currents starts as an instability 

of the front surface in the near-wall region and is observable in the LGR simulation at 

t=10t0 (Fig. 5.3b) and in the HGR simulation at t=5t0 (Fig. 5.3a).  For t>15t0 the spanwise 

perturbations induced by the lobes and clefts in the HGR simulation produce a strong 

three-dimensionality of the flow in the front region and interfere with the flow in the 

region where the KH billows are forming.  The presence of the no slip surfaces (e.g., see 

Simpson, 1972, Hartel et al., 2000a) is thought to play a major role in the development 

and growth rate of the lobe and cleft instability.  Consistent with the development of the 

individual lobes and clefts, the local front velocity is not constant in the spanwise 

direction.   

More information about the development in time of the lobe and cleft structures is 

given in Fig. 5.6, which shows the positions of the front at a time interval of t/t0=1 in a 

horizontal plane intersecting the current at a distance of 0.016h from the bottom wall for 

the LGR and HGR cases.  In both simulations the number of lobes and clefts varies as the 

current continues to propagate.  New lobes are created from disturbances occurring on the 

surface of an existing large lobe.  At other locations two lobes merge together.  At both 

Grashof numbers the size of the penetration of the ambient fluid in the clefts is of the 

same order as the lobe size, consistent with the experimental observations of Simpson 

(1972).  However, the mean sizes of the lobes and of the clefts observed in the HGR 

simulation are clearly smaller and their deformations are sharper than the ones observed 

at the same nondimensional time in the LGR simulation.  The estimated average and 

maximum size of the lobes during the slumping phase in the LGR simulation is 0.5h and 

0.93h, respectively.  The values inferred from the experiments conducted by Simpson 

(1972) at the corresponding Reynolds number are 0.55h and 1-1.05h.  In the HGR 
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simulation (Ref=Uf h/ν=29,000) the mean and maximum size of the lobes are 0.13h and 

0.35h, respectively.  Though no direct comparison with experiment is possible as the 

maximum value of the Reynolds number defined with the front velocity and head height 

in Simpson’s (1972) experiments was only 11,000, one can get an estimate from the 

correlation proposed by Simpson.  The inferred values for the average and maximum size 

of the lobes at Ref=29,000 are 0.12h and 0.25h, respectively.  The agreement for the mean 

size between our simulation and the value predicted by Simpson’s correlation is 

excellent. 

The streamline patterns (x-y section) shown in Fig. 5.7 in a coordinate system 

advancing with the front velocity, at a time instance during the slumping phase, confirm 

the findings of  Hartel et al. (2000a) regarding the flow topology in the nose region.  Our 

HGR results show that even at Reynolds numbers that are more than one order of 

magnitude higher than the ones considered in the 3D DNS of Hartel et al. (2000a) the 

foremost point (nose) is not a stagnation point in a translating coordinate system.  As the 

Grashof / Reynolds number increases, the vertical distance ∆yn between the nose and the 

bottom wall decreases from 0.21h in the LGR case to 0.06h in the HGR case. Meanwhile, 

the gap between the nose and the bottom wall at the location of the stagnation point 

decreases from 0.06h to 0.01h.  More importantly, the ratio of the flux of light fluid 

underneath the front, uV& , to the expected total incoming flux of light fluid, 0V& =2hUf, is 

close to 1.21% in the LGR simulation and equal to only 0.05% in the HGR case.  This 

further strengthens the argument made by Hartel et al. (2000a) that the lobe-and-cleft 

instability in the case of a GC propagating on a solid surface is driven by the unstable 

stratification region between the nose and the stagnation point.  Their observation was 

based on 3D simulations at Ref~750 and 2D simulations at Ref<30,000.  In both their and 

our 2D simulation the predicted ratio uV& / 0V&  for the HGR case is around 0.34%, sensibly 

higher compared to the value of 0.05% predicted by the present 3D simulation.  For the 

LGR case the value predicted by the 2D simulation (1.18%) is quite close to the 3D 



www.manaraa.com

 

 

63

prediction (1.21%).  The values of these quantities are summarized in Table 5.1 where 

the numbers in parenthesis correspond to the values obtained from the 2D simulations.  In 

the same table, the values of ∆yn inferred from the measurements of Simpson (1972) or, 

for the HGR case, from the correlation curve are also given (the nose height is about 1.1h 

in our simulations).  The agreement, for the 3D simulations, especially at the higher 

Grashof number, is very good.    

5.3 Front Velocity 

The evolution of the spanwise-averaged front position function of the 

dimensionless time is plotted in Fig. 5.8 for the LGR and HGR 3D simulations.  During 

the slumping phase the slope of the curve describing the advancement of the forward 

propagating front (continuous line) and backward propagating front (circles) in time is 

practically constant and equal for the two currents (at least until t=35t0) indicating a 

practically constant front velocity after the initial acceleration phase when the GCs are 

forming.  The value of the front velocity, however, is clearly dependent on the Grashof 

number, as the slope of the line corresponding to the HGR simulation is higher than the 

one for LGR simulation.  The front velocity is obtained by differentiating the front 

position from the spanwise-averaged frames with time.  The inferred values of the front 

Reynolds number, Ref, defined with the asymptotic slumping-phase velocity, Uf, are 648 

and 29,050 for the LGR and HGR 3D simulations.  It is interesting to note that the strong 

three-dimensionality of the flow in the interface region did not result in large oscillations 

of the front velocity in the HGR simulation.  In both simulations, the head heights of the 

two currents are close to 1.1h for t>10t0 which corresponds to values of 712 and 31,900 

for the Reynolds numbers defined with the front velocity and the head height.  The 

corresponding Froude numbers (Fr=Uf/ub) are 0.58 and 0.65, respectively.  These values 

are plotted in Fig. 5.9 along with results from the 2D and 3D DNS simulations of Hartel 

et al. (2000a) and values from various experiments.  The top straight line in Fig. 5.9 at 
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Fr=1/ 2 corresponds to the theoretical results of Benjamin (1968) and Shin et al. (2004) 

for inviscid currents (infinite Grashof numbers).  The front velocity over the slumping 

phase is accurately predicted by the present simulations. 

In the LGR case no noticeable differences are observed in the front position at 

least until t=30t0 between the 2D and 3D simulations.  During the slumping phase the 

presence of the lobe and cleft structure at the front of the current and of strong spanwise 

disturbances in the position and strength of the KH billows in the HGR 3D simulation did 

not result into a front velocity value significantly different than the one predicted by a 2D 

simulation where these phenomena are absent.  However, a slight underprediction of the 

front velocity by the 2D simulation is observable for t>15t0.  For example at t=20t0 (Fig. 

5.2) the current in the 3D simulation traveled an additional 0.1h compared to the 2D 

simulation.  The values of the Reynolds numbers defined with the mean front velocity 

over the slumping phase (Ref) are compared in Table 5.1 for the 2D and 3D simulations.   

More information on the front speed in the initial stages of the flow, when the 

flow accelerates from rest, are given in Fig. 5.10 where the temporal variations of the 

position and velocity of the forward propagating front were plotted for the LGR and HGR 

simulations.  The head and nose of the two currents are forming over this period and 2D 

effects dominate.  One can observe that in both cases the velocity variation, before it 

reaches an approximately constant value that corresponds to the slumping phase, is not 

monotonic.  Rather, the front velocity first reaches a maximum of 0.74ub and of 0.67ub in 

the HGR and LGR simulations, respectively.  The maximum is reached after around 1.9t0 

from the gate release.  Then, the velocity slowly oscillates until it reaches the fairly 

constant values (0.65ub and 0.58ub, respectively) that characterize the front movement 

during the slumping phase.  The transition between the acceleration phase and the 

slumping phase appears to take place at t~3.5t0 in the LGR simulation and at t~5.5t0 in 

the HGR simulation.         
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5.4 Analysis Of Near-Wall Flow Structures 

As the Reynolds number defined with the height of the head and the front velocity 

is well above 5,000 after the initial stages of the current development in the HGR 

simulation, the flow inside the head region is expected to be turbulent and the near-wall 

flow is anticipated to contain the usual coherent structures associated with a turbulent 

boundary layer over a wall.  The instantaneous vertical vorticity contours (two vorticity 

levels corresponding to huby /2±=ω  are represented in Fig. 5.11b and the view is from 

the exterior of the channel looking laterally toward the bottom of the forward propagating 

current) at t/t0=20 clearly show the presence of a streaky structure near the wall between 

the front (x~13h) and x~5h.   

These vertical vorticity streaks are in fact associated with the high and low 

streamwise velocity streaks that develop in the immediate vicinity of the wall.  Evidence 

of that is given in Fig. 5.12 where the same vertical vorticity streaks are shown on the 

bottom wall (frame a) along with the streamwise velocity contours in a plane located at 

y+~11 from the bottom surface (frame b).  The forward propagating current at that time 

instance is visualized in frame c using concentration contours.   The correspondence 

between the vertical vorticity streaks and the low and high speed streaks is evident (the 

maximum in the vertical vorticity field occurs in the gap between the low and high 

velocity streaks).  For |x|<5h, the velocity and vorticity streaks disappear since the local 

Reynolds number is decaying below values at which turbulent streaks can form or be 

maintained.  The average width of these streaks is about 0.075h and their mean length is 

about 1.0h.  The presence of these streamwise velocity streaks in turbulent boundary 

layers and channel flows is associated with the legs of the hairpin like vortices that are 

present over the near-bed region.  It is suspected that  a similar phenomenon is present in 

the turbulent flow region of the current where these counter-rotating vortices can displace 

fluid from the immediate vicinity of the wall (including from the thin layer of fluid 

overrun by the head of the current) toward the middle of the channel.  The associated 
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sweep and ejection phenomena are expected to promote mixing.  In the region close to 

the GC front, the action of these longitudinal vortices can induce further perturbations of 

the front region that can amplify the instabilities responsible for the formation and growth 

of the lobes.   

The distribution of the same vertical vorticity contour levels in the LGR 

simulation (Fig. 5.11a) is clearly different.  Practically, only one row of large (mean 

width ~0.23h), very long (mean length ~4.5h) streaks can be identified immediately 

behind the front.  This suggests that the nature of the instability is similar in both 

simulations, but the Reynolds number is not high enough for the streaky structure to 

develop and be sustained over longer distances behind the front.  

5.5 Analysis Of The Spatial Distribution Of The Wall 

Shear Stress During The Propagation Of The Current  

The spatial and temporal distributions of the bed shear stress have to be known to 

estimate global quantities related to the capacity of the current to entrain bed particles 

(e.g., the total amount of sediment entrained by the current and the associated bed 

morphology changes), especially in numerical models in which the entrainment is 

generally a function of the difference between the actual bed shear stress and the critical 

bed shear stress value given by the Shields diagram.  In this regard, accurate prediction of 

this quantity is of critical importance for the overall practical use of the model.   

The focus of the discussion will be on the HGR simulation where the flow is 

strongly turbulent over part of the GC and thus is more representative of practical 

applications.  The instantaneous distribution of the nondimensional wall-friction velocity 

contours, uτ/ub, is shown in Fig. 5.13a for t=10t0 and in Fig. 5.13b for t=20t0.  In Fig. 

5.13a, 2D streamlines are also shown in an x-y section in a frame of reference translating 

with the front velocity.   The friction velocity is ρττ /bu = and the modulus of the wall 

shear stress vector is calculated using the definition.  This is possible because the mesh in 
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the wall normal direction is fine enough to resolve the viscous sub-layer (no wall 

functions are used).   

The first obvious feature of the friction velocity distributions is the streaky 

structure of the zones characterized by high wall shear stress (friction velocity) values in 

the region beneath the head of the GC.  These streaks of high wall-shear stress are 

obviously related to the high speed streamwise velocity streaks present in the near-wall 

region over the part of the current body where the flow is turbulent (see discussion of Fig. 

5.12).  The length of the streaky zone characterized by high bed friction values is about 

4h at t=10t0 and 8.5h at t=20t0.  This indicates that a longer part of the current becomes 

turbulent as the gravity current advances.  It is, however, expected that at a certain point 

in the evolution of the GC in an infinite-volume lock exchange flow, an equilibrium state 

will be reached such that the length of the region where the flow is turbulent in the wall 

vicinity will remain approximately constant.  The flow is expected to relaminarize behind 

this region. 

The other feature of the friction velocity distribution in Fig. 5.13a is the presence 

of several spanwise bands of respectively high and low friction velocity values starting 

behind the front.  These bands of high friction velocity values (see dashed lines in Fig. 

5.13a) correlate relatively well with the position of the cores of the vortices present inside 

the GC in the vicinity of the wall when the velocity vector is represented in a frame of 

reference moving with the front velocity.  These vortices in the head region observed in 

the translating frame of reference can be related to the quasi 2D KH billows (see C=0.5 

contour line in Fig. 5.13a) present in the head region at t=10t0.  As the friction velocity 

values inside these spanwise bands are comparable to those observed in the front region, 

it is clear that the GC will entrain sediment over a relatively large distance behind its 

front.   

The total length of the region characterized by relatively high values of the 

friction velocity (uτ/ub>0.045) is 6h at t=10t0.  It is also interesting to consider the 
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distribution of uτ at later times of the evolution of the current when the KH billows shed 

behind the front lose their coherence over a short distance.  For example, the distribution 

at t=20t0 is shown in Fig. 5.13b.  The spanwise bands observed at t=10t0 have practically 

disappeared both over the region where the friction velocity displays a streaky structure 

and behind it.  The length of the region characterized by relatively high values of the 

friction velocity (uτ/ub>0.045) has increased to 8.5h.  As for the velocity streaks, it is 

expected that as the infinite-volume lock exchange flow further develops in time, a sort 

of equilibrium configuration of the turbulent region of the current will be reached. This is 

when the length of the region characterized by large wall-shear-stress values and thus the 

amount of sediment entrained from the bed will practically be independent of time. 

An interesting question is whether the position and intensity of the spanwise-

averaged wall-shear-stress distribution can be accurately captured by a much less 

expensive 2D model at the different stages of the evolution of the current.  Fig. 5.14 

shows the comparison between the spanwise averaged wall friction velocity predicted by 

the 3D simulation (red line) and the one predicted by the 2D simulation (blue line) of 

case LGR in the right side of the channel (x/h>0) at t=10t0 and t=20t0.  The position of the 

front corresponds to the first peak from the right at x~6h and x~11.3h, respectively.  

Besides the front, large values of the friction velocity, comparable to the ones observed in 

the front region, are present especially in the later stages of the development of the 

current, during the slumping phase.  The predictions given by the 2D models are 

relatively accurate though the errors increase as the current develops and 3D effects 

become more and more important.  However, at this relatively low Grashof number 

where 2D effects are predominant (see discussion of Fig. 5.3), the good accuracy of the 

2D predictions is not surprising.   

In the HGR simulation (Fig. 5.15), some differences are observed especially in 

the later stages of the evolution of the current, though the range of values of uτ/ub remains 

similar to that observed in the LGR simulation.  For example, in Fig. 5.15b corresponding 



www.manaraa.com

 

 

69

to t=20t0 the spanwise averaged wall-friction velocity (continuous red line) is relatively 

constant behind the front region.  This is obviously due to the fact that the KH billows 

lost most of their coherence at that stage of the evolution of the current in the HGR 3D 

simulation, which was not the case in the LGR simulation.  In addition to the spanwise 

averaged values, the instantaneous values in an x-y section (dashed red line) were also 

plotted in Fig. 5.15 to get a better idea of the influence of 3D effects on the distribution of 

the wall friction velocity. Observe that the amplitude of the oscillations around the 

spanwise-averaged values is relatively high especially in the region where the flow is 

strongly turbulent.  Behind that region (e.g., for x/h<5 at t=20t0, see also Fig. 5.13b) the 

amplitude of the oscillations of the instantaneous friction velocity in the spanwise 

direction decreases substantially.  The 2D predictions (blue line) at both t=10t0 and t=20t0 

show very large variations in the streamwise direction and, locally, do not correlate well 

with the 3D predictions.  The large-scale oscillations are associated with the presence of 

the KH billows in the interface region (Fig. 5.2b) that were shown to maintain their 

strong coherence even at t=20t0 in the 2D simulation.     

Thus, 2D simulations appear not to be effective in predicting the spatial and 

temporal evolution of the bed shear stress for high Grashof numbers. Therefore, they also 

do not accurately predict the local sediment entrainment in the case of a current 

propagating over a loose bed.  Still, as the mean (streamwise averaged) value over the 

region characterized by large bed shear stress values is comparable to the one predicted 

by the 3D simulation, information obtained from a 2D simulation may be used with a 

certain degree of success when trying to predict, in an integral sense, the total amount of 

sediment entrained by the current at a certain moment in time.      
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5.6 Energy Budget Of The Infinite-Volume Lock-Exchange 

Flow 

Gravity currents are flows driven by the conversion of potential energy into 

kinetic energy, which is then dissipated by viscous friction. The dissipation is solely 

caused by the gradients in the velocity field for compositional GCs. For LES simulations, 

in which the model can directly calculate only the gradients in the resolved velocity field, 

the total dissipation rate, ε, has two components.  One is the viscous dissipation and the 

other in the sub-grid scale (SGS) dissipation due to velocity gradients at the unresolved 

scales that have to be modeled. To examine the variation of the kinetic energy in time, the 

momentum equation for the i direction (3.2) is multiplied with ui and then a summation is 

performed over the index i to obtain the transport equation for the resolved kinetic 

energy: 
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where D /Dt indicates the material derivative.  By integrating equation (5.1) over the 

entire flow domain, Ω, an equation for the temporal evolution of the total kinetic energy, 

Ek, is obtained.  
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where 
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In integrating (5.2) to obtain equation (5.3), the convective term and the pressure 

term which are in divergence form reduce, using Gauss’s theorem, to integrals over the 

boundaries of the domain.  Both terms contain the velocity which is assumed to be equal 
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or very close to zero on all the boundaries.  Thus, the contribution of these terms to the 

temporal evolution of Ek is neglected.  The total potential energy over the flow domain is:  

∫
Ω

= dVCxtE p  )( 2   (5.4) 

The time derivative of the potential energy Ep can be rewritten as: 
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Ignoring the effects of diffusion in the concentration equation (Eq. 3.3) such that one can 

write DC/Dt~0, the equation for the total potential energy Ep simplifies to: 

γ== ∫
Ω

dVCu
dt

dE p
2   (5.6) 

The right hand side of equation (5.6) is equal and of opposite sign to the last term in 

equation (5.2).  Summing equations (5.2) and (5.6) and assuming there is no change in 

the potential energy across the boundaries of the domain one obtains an equation for the 

temporal evolution of the total mechanical energy: 
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The right hand side of equation (5.7) is the total dissipation of energy ε with a negative 

sign. 

ε−=+ )( pk EE
dt
d       (5.8) 

In LES, the total dissipation ε can be split into the viscous dissipation, ε0, and the SGS 

dissipation, εt.  The expressions for the two terms are: 
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and 
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Examination of the relative magnitude of εt and ε0 can provide useful information on the 

effect of the unresolved scales on the numerical solution. It also helps to quantify the 

effect of the LES model for a simulation run on a mesh with a certain grid density.  

Integrating (5.8) with respect to time gives an integral energy balance equation: 

00. pkdpk EEconstEEE +==++   (5.11) 

where Ek0 and Ep0 are the total initial kinetic energy and initial potential energy in the 

domain. The term Ed represents the time integral of the total dissipation. 
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The time evolution of the terms in equation (5.11), which are nondimensionalized 

by the mechanical energy at the start of the lock-exchange flow is plotted in Fig. 5.16.  

The solid lines refer to the HGR simulation while the dashed lines refer to the LGR 

simulation.  The individual terms were estimated using equations (5.4), (5.9) and (5.10) 

and by integrating in time equation (5.3).  The volume of integration corresponds to that 

of the computational domain.  As expected, the total energy given by the left-hand side of 

equation (5.11) is conserved in time.  The larger values of the kinetic energy observed in 

the HGR simulation are due, at least partially, to the increase in the front velocity with 

the Grashof number.  The kinematic part of the viscous dissipation term (ε0 Gr  in 

equation (5.9)) is larger in the HGR simulation compared to the LGR simulation due to 

the presence of small scale velocity fluctuations that induce larger velocity gradients, 

especially in the region where the flow is turbulent.  However, the viscous dissipation 

term scales with the inverse of the square root of the Grashof number.  Though the 

increase in the SGS dissipation partially compensates for the much smaller values of ε0 in 

the HGR simulation, the increase in the total dissipation Ed with time is somewhat 

smaller in the HGR simulation.   
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More details on the energy balance can be inferred from Fig. 5.17 in which the 

terms in the differential equation for the resolved kinetic energy (equation 5.2) are 

plotted.  During the initial acceleration phase there is a clear increase in the rate of 

growth of the kinetic energy within the domain.  Then, in both simulations, the rate of 

growth decays slowly in a non-monotonic fashion.  For t>20t0 the growth rate dEk/dt 

appears to be relatively constant in the HGR simulation.  A monotonic increase in the 

total dissipation rate, ε, is observed in the HGR simulation until t~15t0 after which the 

dissipation within the domain starts decaying slowly until t~20t0 when it becomes almost 

constant.  The change in the slope of the curve describing the variation of the total 

dissipation is related to the occurrence of a maximum in the variation of the SGS 

component (εt) of the total dissipation.  The curves in Fig. 5.17 suggest that the rate of 

change of the kinetic and potential energy and the total dissipation rate become relatively 

constant for t>20t0 in the HGR simulation.  This is consistent with the linear variation of 

the potential and kinetic energy observed in Fig. 5.16 for t>20t0.  Whether or not this 

balance will continue indefinitely is not entirely clear as the simulation had to be stopped 

once the front approached the lateral boundaries of the computational domain.   

However, such a scenario may be possible. As two currents get further away from 

each other, the flow in the middle region (centered around the position of the lock gate) 

of the channel relaminarizes and the streams of light and heavy fluid propagating in 

opposite directions in the upper and lower halves of the middle part of the channel are 

relatively uniform.  At that point there is not much interaction between the forward and 

the backward propagating currents and the flow in the middle region does not 

significantly contribute to the individual terms in equation (5.2).  The length of the region 

behind the front of each current, where the flow is turbulent, or where large velocity 

gradients are present, is also going to become practically independent of time.  Thus, the 

total amount of dissipation will be relatively constant. 
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Fig. 5.18 gives more details on the role of the LES model in the present 

simulations.  The viscous and SGS contributions to the total dissipation are plotted.  In 

the LGR simulation the SGS contribution is practically negligible over the whole 

simulated period confirming that, at the Grashof number used in the LGR case and given 

the mesh used to obtain the solution, our simulation is in fact very close to a DNS.  The 

situation changes dramatically in the HGR case in which, after the short acceleration 

period when the SGS contribution is very small, the SGS component becomes larger than 

the viscous one.  The largest value of the ratio of εt/ε is recorded at t~15t0 where the 

maximum value of the total dissipation is observed.  This value is around 67.3%.  Then, 

the SGS component starts decaying mildly, while the viscous component continues to 

increase, such that at t=25t0, εt/ε ~58%.  The enlarged plots of the variation of the total 

dissipation in Fig. 5.18 suggest that the shape of the curves in the LGR and HGR 

simulations are similar and a maximum in the value of the total dissipation is reached 

even the LGR simulation.  This maximum appears to occur around t~29t0.  One possible 

explanation for the longer time the dissipation needs to attain its maximum value is the 

much stronger coherence of the KH billows in simulations at relatively low Grashof 

numbers where the growth of 3D instabilities, that are very efficient in breaking the 

coherence of these billows, is very slow (see Fig. 5.3).                   

5.7 Analysis Of The Spatial And Temporal Distributions 

Of The Dissipation 

Information on the spatial and temporal distribution of the dissipation rate within 

a GC is important not only for understanding the physics of lock-exchange flows (e.g., 

what are the main flow structures responsible for most of the dissipative losses) at 

different stages of the current evolution but also for developing theoretical models of 

these flows (e.g., see Huppert & Simpson, 1980) which incorporate the effect of the 

dissipation and for determining the parameters in these models.  As the dissipation cannot 
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be estimated directly in these simplified models, one possible solution is to calibrate these 

parameters using the distributions of the dissipation rate determined from high resolution 

simulations.  This is also because accurate measurements of the distribution of ε within a 

current are practically impossible to obtain experimentally.  Moreover, the separate 

contributions of the head and tail regions of the current, or the contribution of the 

interface region to the total dissipation can be calculated and modeled independently.  

Necker et al. (2005) were the first to perform such an analysis for a finite-volume 

particulate current at Gr=106-107.  In the present chapter, the analysis is focused on the 

HGR simulation at Gr=2×109.   

To study the distribution of the dissipative losses along the channel, the local 

dissipation rate εL=εL (x1,x2,x3) is first integrated over the spanwise and vertical 

directions.  This leads to a variable ε23 which is function only of the streamwise position 

and which allows us to infer the distribution of the dissipation along the forward or 

backward propagating currents. 
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Similarly, the SGS contribution can be calculated as: 
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In Fig. 5.19 the two distributions of 23ε  and 23
tε  are plotted at four 

nondimensional times t/t0=5, 10, 15 and 30, which are representative of the evolution of 

the forward propagating current over the slumping phase.  The corresponding spanwise-

averaged concentration contours are also shown in the same figure.  Similar plots for the 

backward propagating current show that the total dissipation rate in the two currents, at a 

certain moment in time, is practically the same.  Consistent with the variation of the total 

dissipation rate ∫=
1

11
23 )(

L
dxxεε  in Fig. 5.17, the maximum in the total dissipation (area 
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beneath the curve defined by the variation of 23ε ) is observed to occur at t=15t0.  At that 

moment, large dissipative losses are observed practically over the whole length of the 

current starting at x/h=0.   

As previously discussed, a relatively constant width mixing layer, in which large 

scale structures are practically absent, starts developing as the currents advances.  At 

t=30t0, it extends until about x/h=10 (see also Fig. 5.2a).   This corresponds to the region 

over which the values of the variable 23ε  are clearly smaller compared to the ones 

observed over the head region (x/h>10).  Inside the head region, the flow is strongly 

turbulent (the SGS contribution 23
tε is about 60-70% of the total dissipation term 23ε ) and 

large scale structures are still present.  The SGS dissipation contribution over the region 

0<x/h<8, as a percentage of the total dissipation is relatively small, suggesting that the 

flow is starting to relaminarize in that region.  It is expected that as the current continues 

to advance, the values of 23ε  and 23
tε  will continue to decay in the middle part of the 

channel (low x/h values).  This makes it reasonable to believe that the length of the region 

where most of the dissipative losses occur will eventually become independent of time 

and the total dissipation within that region will relatively constant in time, consistent with 

the trend suggested by the variation of ε in Fig. 5.17 for the HGR simulation.      

The distribution of the dissipation along the vertical direction can be examined by 

integrating the local dissipation rate εr over the length and width of the channel.  This 

quantity is denoted by ε13 and its expression is:  
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Similarly, the SGS component is defined as: 
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Fig. 5.20 shows the variation of these quantities along the vertical axis at four 

time instances, t/t0 = 5, 10, 15 and 30. Only the lower part (y/h<1) is shown as the 

distributions are practically symmetrical with respect to the mid-plane y=h between the 

two walls.  Two areas of high dissipation are observed along the vertical axis in the four 

frames.   

The first area is located very close to the bed (y/h<0.2) and is produced by the 

large streamwise velocity gradients in the thin boundary layer on the bottom wall and by 

the turbulent structures present in the near wall region at streamwise locations 

corresponding to the front region and some distance behind it, where the flow is 

turbulent.  In this layer, the overall contribution of the SGS term to the total dissipation is 

relatively small, in part due to the fact that the mesh is refined in the wall normal 

direction near the walls (this reduces the SGS contribution), and also because the 

integration is made over the whole length of the channel.  As in the mid-channel region 

(small |x/h| values) the flow is, at best, only mildly turbulent in the near-wall region in the 

later stages of the evolution of the current; the dominant contribution to the total 

dissipation comes from the viscous component.    

The second area is located around the horizontal mid-plane (0.4<y/h<1 in the 

lower part) and corresponds to the interface between the two currents, where most of the 

mixing occurs, and to the head region where the flow is turbulent.  The SGS contribution 

to the total dissipation in these regions is around 80%, consistent with the fact that a 

broad range of resolved turbulent scales is observed in the interface region (Fig. 5.3, case 

HGR) at wavelengths comparable to the grid size.      

Consistent with the variation of ε in Fig. 5.17, the total dissipation in the two 

regions characterized by high ε13 values in Fig. 5.20 is increasing monotonically from 

t=5t0 to t=15t0, where the maximum value of ε is recorded.  The contribution of the near 

wall region to the total dissipation is around 7% to 9% over this time interval.  After 

t=15t0, the dissipation in the near wall region continues to increase but the dissipation in 
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the regions away from the bed starts decreasing.  For example, at t=30t0 the contribution 

of the near-wall region to the total dissipation has increased to 13%.  Still, most of the 

energy is dissipated over the interface and head regions.     

The high dissipation near the bed is expected to be largely caused by the 

streamwise velocity gradients in the wall normal direction.  To investigate this, the 

component 13
12ε which contains these gradients in the expression for ε was plotted in Fig. 

5.20.  Its expression is: 
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One can see that this component accounts for more than 95% of the total dissipation in 

the region between the wall and y/h<0.2.  This confirms our supposition if one takes into 

account that, for flows propagating over a flat surface in the streamwise direction, the 

streamwise gradient of the vertical velocity is much smaller than the vertical gradient of 

the streamwise velocity in the wall region.  As expected, farther from the wall 

(0.2<y/h<1) the contribution of this component is small (less than 20% of the total 

dissipation). This is consistent with the strong three-dimensionality of the flow in this 

region. 

 

5.8 Summary 

Results from two high resolution LES simulations of compositional gravity 

currents developing into an infinite channel in which the two fluids were separated 

initially by a lock gate were discussed with the goal of highlighting the changes in the 

evolution of lock exchange flows between Grashof numbers of the order of 106 where 

DNS results (e.g., see Hartel et al., 2000a) were already available and Grashof numbers 

of the order of 109 where highly-resolved DNS using non-dissipative algorithms is 
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computationally too expensive.  Whenever possible, qualitative and quantitative 

comparisons with experimental data and/or results from previous numerical 

investigations were presented.  Overall, the agreement between the results was found to 

be satisfactory.  The use of a non-dissipative discrete energy conserving finite-volume 

Navier-Stokes solver with a dynamic Smagorinsky model insured that a minimum 

amount of dissipation was added to the regions where unresolved small scale turbulence 

was present.   

The forward and backward propagating currents were found to exhibit the classic 

characteristics of a GC propagating over a no-slip wall.  This includes the lobe-and-cleft 

structure at the leading edge of the head and the shedding of KH billows from the front 

region.  However, the development of these flow structures was found to be strongly 

dependent on the Grashof / Reynolds number.  In a statistical sense, though the two 

currents propagating in opposite directions were not exactly anti-symmetric, the values of 

the global parameters describing the evolution of the GCs, including the variation of the 

front velocity in time, the mean sizes of the lobes and clefts, etc. were found to be very 

close.  The values of these quantities were also found to be consistent with results from 

experiments and/or simulations conducted at similar Grashof numbers.  The front 

velocity was observed to peak during the short initial acceleration phase in both 

simulations before reaching a relatively constant value during the slumping phase.   

The topology of the current in the nose region was found to be unaffected by the 

Grashof number.  Results from the present 3D simulations confirmed that there is a 

strong decrease in the amount of low density fluid trapped beneath the current as it 

propagates over the bottom wall.  In fact, the amount of low density fluid predicted by 

our 3D HGR simulation was significantly lower than previous predictions based on 2D 

simulations by Hartel et al. (2000a).  This finding strengthens the argument proposed by 

Hartel et al. (2000a, 2000b) that the unstable stratified region between the nose and the 

stagnation point plays the determinant role in the growth of the lobe and cleft instability.    
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The LGR simulation was conducted at a Grashof number of 1.25×106, very close 

to the one (Gr=1.5×106) simulated using 3D DNS by Hartel et al. (2000a, 2000b), for 

which the Reynolds number defined with the front velocity was about 700.  At this 

Reynolds number, the turbulence effects, even if present, are not expected to play a major 

role in determining the evolution of the lock-exchange flow.  Though the development of 

the forward and backward propagating currents was originally anti-symmetric, the 

growth of the three-dimensional instabilities eventually destroyed the symmetry of the 

large-scale KH billows.  However, over the simulated period of time, the coherence of 

the KH billows in between the two fronts, including in the middle of the channel (around 

the initial position of the lock gate), remained strong.  

The HGR simulation was conducted at a Grashof number of 2.00×109.  As the 

associated front Reynolds number was close to 30,000, this simulation allowed the study 

of the evolution of the gravity current and associated instabilities for the case in which 

the flow, at least in the head region was strongly turbulent.   In this simulation, the KH 

billows were found to lose their spanwise coherence very quickly.  As the current 

continued to propagate well into the slumping phase, only the first one or two billows 

were recognizable.  Their cores were strongly deformed in the spanwise direction due to 

the lobes and clefts that started influencing the growth rates of the KH instabilities in the 

formation region.  The interface region became populated with small scale energetic 

eddies that broke the KH billows into smaller structures.  The small scale eddies in the 

mixing layer were also found to be very effective in locally enhancing the mixing.  As a 

result, the relatively constant thickness interface region farther from the two fronts did 

not appear to contain any large-scale structures in the later stages of the simulation.  

Additionally, vertical vorticity streaks were observed to form in the near-wall region at 

streamwise positions corresponding to the head region and some distance behind it.  

These streamwise vorticity streaks are induced by the low and high speed streaks present 

a short distance from the walls and are similar to the ones observed in turbulent wall 
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boundary layers and turbulent channel flows.  As the turbulence in the tail region behind 

the head started decaying, the streaky structure was found to disappear confirming that 

these streamwise streaks are associated with the local presence of a strong turbulent flow 

propagating along the walls.   

The analysis of the terms in the transport equation for the total kinetic energy 

showed that in the later stages of the current evolution, the rate of change of the kinetic 

and potential energy and the total dissipation rate become relatively constant suggesting 

that the two currents reach some sort of equilibrium state.  The SGS dissipation was 

shown to contribute significantly to the total dissipation in the HGR simulation.  Both the 

SGS dissipation and the total dissipation were observed to reach a maximum at some 

point during the slumping phase.  Prior to this, the dissipation in the near-wall and 

interface regions were observed to increase monotonically with time.  After peaking, the 

total dissipation in the interface region starts decaying while the dissipation in the near-

wall region continues to grow such that the total dissipation in the channel decays slowly.  

Eventually, the total dissipation appears to reach an almost constant value.     

The spatial and temporal distributions of the friction velocity were investigated 

because the amount of sediment entrained by a GC propagating over a loose bed is 

determined to a great extent by the local values of the bed-shear stress and sediment size.  

In the LGR simulation, significant oscillations were found to be present in the spanwise-

averaged distribution of the wall-friction velocity behind the head due to the persistence 

of the quasi 2D KH billows at the interface.  In contrast to that, the distribution of the 

friction velocity in the HGR simulation was found to be more uniform behind the front 

region.  Though 2D simulations were relatively successful in predicting the spatial 

distribution of the friction velocity in the LGR simulation, they were not able to 

accurately predict the distribution of the friction velocity behind the front of the GC in 

the HGR simulation.  This is because in the 2D simulation the 3D instabilities cannot 

grow and thus strong KH billows are present in the interface region for longer periods of 
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time compared to the 3D simulation.  These KH billows induce very large oscillations in 

the distribution of the friction velocity over the head and tail of the current.  These 

limitations should be considered when 2D simulations are used to predict sediment 

entrainment patterns for high Grashof numbers gravity currents. 
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Table 5.1 Details of the lock-exchange LGR and HGR 3D simulations during the 
slumping phase. 

Case Gr Re= Gr  Ref Fr ∆yn/h ∆ys/h Vu/Vo (%) 

LGR 1.25×106 1,118 648  
(648) 

0.58  
(0.58) 

0.21  
(0.26){0.18} 

0.06  
(0.065) 

1.21  
(1.18) 

HGR 2.00×109 44,721 29,000 
(28,900)

0.65  
(0.65) 

0.06  
(0.11){0.062}

0.01  
(0.018) 

0.05  
(0.34) 

 
Note: Values in () are 2D results. Values in {} are from Simpson (1972). 
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a)  
 

b)     
 

c)   

Figure 5.1. Visualization of the lock-exchange flow at Gr=1.25×106 using concentration 
contours. a) LGR 3D simulation showing spanwise averaged contours at non-
dimensional times t/t0 = 5, 10, 15 and 20; b) LGR 2D simulation at t/t0 = 20; 
c) DNS of Härtel et al. (2000a) at same Grashof number and t/t0 = 20. 
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a)  
 

    

b)  

Figure 5.2. Visualization of the lock-exchange flow at Gr=2.0×109 using concentration 
contours. a) HGR 3D simulation showing spanwise averaged contours at non-
dimensional times t/t0 = 5, 10, 15, 20, 27, 30 and 33; b) HGR 2D simulation at 
t/t0 =5 and 20. 
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a)  

Figure 5.3. Visualization of gravity current interface using a concentration isosurface (C = 0.5) for LGR and HGR 3D simulations 
with insets showing development of the lobe and cleft structures at the front. a) t/t0=5; a) t/t0=10; b) t/t0=15; d) t/t0=20. 
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b)  

 

 

Figure 5.3 continued 
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c)  

 

 

Figure 5.3 continued 
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d)  

 

 

Figure 5.3 continued 
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Figure 5.4. Vertical spanwise-averaged concentration profiles in the central region of the 
channel where a mixing layer of relatively constant width is present in the 
later stages of the HGR simulation.  The thick lines correspond to the mean 
profile.  The thin lines correspond to instantaneous profiles in the section 
x/h=constant.  a) x/h=0.0; b) x/h=2.0; c) x/h=4.0; d) mean profiles at the 
various streamwise sections with a best-fit hyperbolic tangent profile. 
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a)

b)  

Figure 5.5. Visualization of the instantaneous ratio of SGS viscosity to kinematic 
viscosity at t/t0 = 20 in the HGR case. a) 2D simulation; b) 3D simulation 
(spanwise-averaged profiles). 
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a)  

b)  

c)  

Figure 5.6.  Visualization of the development of the lobe and cleft instability in the x-z 
plane situated at a distance of y/h=0.016 from the bottom wall.  Consecutive 
lines indicate front position at a time intervals of ∆t/t0 = 1. a) LGR simulation; 
b) HGR simulation; c) Close-up view showing front position superimposed on 
the mesh in the HGR simulation. 
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a)   
 

b)  

Figure 5.7. Visualization of the spanwise-averaged flow topology in the nose region 
using streamlines in a frame of reference translating with the front velocity. a) 
LGR simulation; b) HGR simulation. 
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Figure 5.8. Evolution of the front position for the forward and backward propagating 
currents in the LGR and HGR simulations. 
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Figure 5.9. Froude number, Fr, as a function of Grashof number, Gr for lock-exchange 
flow in a channel with no slip walls. Simulation data: Open squares 
correspond to present 2D LES; Open circles correspond to present 3D LES. 
Open diamonds correspond to DNS simulations of Härtel et al. (2000a). 
Experimental data: ■, Keulegan (1957); ●,Simpson & Britter (1979);▲ 
Rottman & Simpson (1983);▼, Keller & Chyou. 2/1  is the theoretical result 
of Benjamin (1968). 
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Figure 5.10. Evolution of front position and front velocity for the forward propagating 
current in the LGR and HGR simulations. 

 



www.manaraa.com

 

 

97

a)  

b)  

Figure 5.11. Visualization of the instantaneous vortical structure of the forward 
propagating current in the near bottom-wall region (lateral view from below) 
at t/t0 = 20 using vertical vorticity isosurfaces ( huby /2±=ω ) a) LGR 
simulation; b) HGR simulation.  
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 a)  

b)  

c)  

Figure 5.12. Visualization of the flow structure in the near wall region at t/t0=20 for the 
HGR simulation. a) Vertical vorticity contours (vertical view from below); b) 
Streamwise velocity contours showing the high and low speed streaks in a 
plane located at y+~11 from the bottom wall; c) Spanwise-averaged 
concentration distribution showing the forward propagating current. 
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a)  

b)  

Figure 5.13. Spatial distribution of the friction velocity uτ/ub on the bottom wall in the 
HGR simulation. a) t/t0=10. Streamlines in a moving frame of reference 
translating with the front velocity are also shown; b) t/t0=20. 
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a)  
 

b)  

Figure 5.14. Streamwise variation of the spanwise-averaged friction velocity on bottom 
wall in the LGR simulation.  Results from the 2D and 3D simulations are 
shown. a) t/t0=10; b) t/t0=20. 
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a)  
 

b)  

Figure 5.15. Streamwise variation of the spanwise-averaged friction velocity on bottom 
wall in the HGR simulation.  Results from the 2D and 3D simulations are 
shown. a) t/t0=10; b) t/t0=20. 
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Figure 5.16. Time history of the potential energy, Ep, kinetic energy, Ek, and integral of 
the total dissipation, Ed, in the LGR and HGR 3D simulations. 
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Figure 5.17. Temporal evolution of the terms in the transport equation for the total kinetic 
energy (equation 11) in the LGR and HGR 3D simulations. 
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Figure 5.18. Temporal evolution of the total dissipation, ε, SGS dissipation, εt  and 
viscous dissipation,εo in the LGR and HGR 3D simulations.  
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Figure 5.19. Streamwise distribution of the dissipation at t/t0=5, 10, 15 and 30 in the 
HGR simulation. a) visualization of the forward propagating current using 
spanwise-averaged concentration contours; b) distribution of the total 
dissipation term )( 1

23 xε and SGS term )( 1
23 xtε calculated using equations (16) 

and (17), respectively. 
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Figure 5.20. Vertical distribution of the dissipation in the lower half of the channel at 
t/t0=5, 10, 15 and 30 in the HGR simulation.  The distributions of the total 
dissipation term )( 2

13 xε , SGS term )( 2
13 xtε and dissipation term containing 

the vertical gradient of the streamwise velocity )( 2
13
12 xε are calculated using 

equations (5.15), (5.16) and (5.17), respectively. 
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CHAPTER 6  

3D LES SIMULATIONS OF FINITE-VOLUME LOCK-EXCHANGE FLOWS 

6.1 Simulation Setup 

The length scale in the finite-volume lock fluid simulations is set equal to the 

channel depth h (domain height L2=h).  The present simulations are somewhat different 

from previous 2D and 3D DNS simulations of finite-volume lock exchange flows.  In the 

present simulations the boundary layers on all the walls are resolved by clustering the 

grid points in the streamwise and vertical directions such that the first point off the wall is 

situated at less than one wall unit (assuming turbulent flow) from the surface.  This 

includes the end wall, which is treated as a no-slip boundary, instead of using a more 

approximate symmetry boundary condition and uniform meshes in the streamwise 

direction, that are typically employed in spectral or semi-spectral codes.  This setup 

allows a more accurate study of the interaction between the bore and the end wall.  There 

is also interest in the flow dynamics in the transition region between the slumping phase 

and the self-similar inviscid region, both of which were not discussed in previous DNS 

studies of compositional currents.   

In all the present simulations the initial lock fluid extends up to the free surface.  

All simulations were performed with a value of the molecular Schmidt number equal to 

600 which corresponds to saline diffusion in water.  In agreement with the experimental 

setup of Hacker et al. (1996), the top surface of the open channel was treated as a slip 

boundary (zero shear).  A convective outflow boundary condition was used at the right 

extremity of the computational domain.  This allows coherent structures to exit the 

domain in a time accurate way.  In the spanwise direction the flow was assumed periodic.  

The flow field in all simulations was initialized with the fluid at rest, i.e., ui = 0. The non-

dimensional concentration field was initialized with a constant value of one in the lock 

region and a constant value of zero inside the channel.  A random disturbance was 
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applied on the concentration field in the lock-gate region to accelerate the growth of 3D 

instabilities.  The time step in the simulations was 0.001t0.  The maximum Courant 

number was around 0.35.   

The lock exchange cases that are denoted as A, B and CL (see Table 6.1) 

correspond to the laboratory experiments carried out by Hacker et al. (1996).  The main 

difference among these cases is the initial volume of lock fluid.  As in all simulations the 

depth of the lock fluid is equal to the channel depth, the difference in the initial volume 

can be characterized by the initial aspect ratio of the lock fluid, R=h/x0 (xo is the initial 

lock length) which is equal to 0.67, 1.00 and 1.78, respectively.  The Reynolds numbers 

defined with the front velocity and the channel half depth (Ref = Uf(h/2)/ν) are in the 

range of 7,000 to 20,000 during the slumping phase (see Table 6.1). Thus, the flow inside 

the current is expected to be turbulent is cases A, B and CL, at least in the region behind 

the front.  A fourth 3D simulation (case CH) was performed at Gr=1012 (Ref~248,000).  

The other parameters in case CH are identical to those in case CL.  Additionally, a 2D 

simulation (case D) with R=1 at a very low Grashof number (Gr=2.8×105, Ref~98) was 

performed.  For the conditions in case D, the GC is expected to transition directly from 

the slumping phase into the viscous phase (see Rottman & Simpson, 1983).  At this low 

Grashof number the flow in the head region and over part of the tail is expected to remain 

two dimensional.   

   The size of the grid was 3072×160×72 in all the 3D simulations.  The 

dimensions of the computational domain in cases A, B and CL were the similar to the 

ones in the physical experiments.  In some cases (e.g., case CL) the length of the domain, 

L1, was longer (see Table 6.1).  The domain size in the spanwise direction (L3) varied 

between 0.768h and 1.025h, over which the computational points were distributed 

uniformly.  The typical size of a cell was 0.0045h in the streamwise direction, 0.018h in 

the vertical direction and 0.012h in the spanwise direction.  As the right boundary was 

approached, the streamwise cell size was progressively increased to 0.03h.  Near the end 
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and bottom walls, the cell size in the wall-normal direction was decreased to ∆n=0.001h.  

Assuming conservatively uτ/Uf~0.04 and Uf/ub~0.5 this translates into ∆n+<1 wall unit 

for case B which had the highest Grashof number among cases A, B and CL.  For case 

CH the stretching in the wall normal direction was somewhat larger, to insure ∆n+~2 for 

the first row of points off the walls.  The mesh size in cases A, B and CL, including near 

the walls, was fine enough for the code to be able to resolve the dynamically important 

turbulent structures.  The use of wall functions in case CH was avoided by insuring that 

the governing equations are integrated through the viscous sub-layer.  However, in the 

other two directions the grid density expressed in wall units is much coarser compared to 

case CL.  Some results from previous 2D simulations of cases A, B and CL are also 

included.  The number of grid points in the streamwise (x) and vertical (y) directions was 

comparable to the one used in a z=constant plane in the 3D simulations.    

6.2 Role Of The Initial Aspect Ratio Of The Lock Fluid 

And Grashof Number In The Development Of The Gravity 

Current 

Most of our analysis regarding the effect of the initial aspect ratio of the lock fluid 

is focused on cases B and CL, but some validation results and values of parameters 

characterizing the evolution of the current for case A are included. Comparison between 

cases CL and CH allow the study of the Grashof / Reynolds number effects on the 

development of a GC from its formation until well into the self-similar inviscid phase.  

As in Chapter 5, in the present discussion the head region of the GC contains the region 

behind the front and the dissipative wake region. 

As expected, the general evolution of the GC and location of transition from the 

slumping to the inviscid phase are affected by the initial aspect ratio of the lock fluid.   

This is evident from comparison of the spanwise-averaged concentration contour plots in 

Figures 6.1 and 6.2 which visualize the evolution of the current in cases B (R=1) and CL 
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(R=1.78) in the 3D simulations and experiments (Hacker et al., 1996).  The arrow 

indicates the position of the reflected bore.  In both cases, simulation results are presented 

at time instances past the time for which experimental data is available.  This is important 

especially for case CL, where experimental data was reported only until the end of the 

slumping phase (Figure 6.2j, t/t0=12.4).  In the 3D simulation the evolution of the current 

was studied until t/t0~40, thus covering a significant amount of time for which the current 

was in the inviscid phase.   In case B, to avoid interaction with the downstream boundary, 

the simulation was stopped around the time the bore was about to catch the front.  In the 

same figures, several frames show both the 2D and 3D solutions. 

Comparison of Figures 6.1a and 6.2a show that the flow is relatively symmetric 

with respect to the initial position of the gate before the bore hits the end wall (t<1.8t0).  

In both cases KH billows start forming on the interface between the current and the 

lighter ambient fluid.  The mixing is strongest in the interface region.  As the current 

develops (subsequent frames in Figures 6.1 and 6.2 corresponding to cases B and CL), 

the interfacial vortices grow in size, are stretched and deformed by 3D flow instabilities 

and eventually break into smaller, highly 3D turbulent eddies before diffusing in the 

ambient flow (see also discussion of Figure 6.4).  As the coherence and energy of the 

large-scale KH billows diminish, small-scale mixing phenomena become dominant.  As a 

consequence, the flow in the interface region and over most of the body of the GC 

becomes mildly stratified. 

Despite these similarities, there are some differences between the evolution of the 

GC in cases B and CL.  For instance, at t/t0=5.6 (Figures 6.1d and 6.2e) the tail region is 

much more developed in case CL while in case B the main KH billows are more compact 

and their number is higher.  In case B, the length of the region of practically unmixed 

lock fluid in the upstream part of the current is twice as long as that in case CL.  The 

streamwise position of the front and non-dimensional time when the bore catches the 

front are substantially different in cases B and CL.  However, at that stage the overall 
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shape of the two currents and the degree of mixing in the tail are relatively similar 

(compare Fig. 6.1g at t=16.0t0 and Fig. 6.2h at t=10.4t0).   

Direct comparison with the experimental data in Fig. 6.1 allows estimation of the 

accuracy of the numerical predictions for case B, at least over a substantial part of the 

slumping phase.   The overall shape of the current and the regions where mixing is 

present appear to be reasonably well predicted by the simulation.  Comparison of the 

position and number of the crests at the top of the unmixed region of the GC suggests that 

most of the large billows predicted in the simulations are also present in the experiment.  

For example, the position of the large billow present at the rear of the head of the current 

(x/h~1) and the associated region of high mixing are correctly captured in Figures 6.1c to 

6.1e.  The billow is still identifiable in Fig. 6.1f at x/h~2.  Also observe that as the bore 

overtakes the large billows, heavier lock fluid is drawn into the billow from the unmixed 

lower region.  The shape of the large region of mixed fluid present in the experiment 

behind the head is somewhat different in the simulation where its shape is more circular.  

A probable reason for this difference is the fact that while in the simulations the gate was 

removed instantaneously and without inducing any velocities in the flow, in the 

experiment that was not the case (see also discussion in Hacker et al., 1996).  Evidence of 

that is given by comparing the simulation and experimental results in Fig. 6.1a.  While 

the concentration contours in the simulation appear to be anti-symmetric with respect to 

x/D=1 (a small break in the anti-symmetry is present near the free surface and the bottom 

wall where slip and no-slip conditions were imposed, respectively), this is obviously not 

the case in the experiment where the GC has already formed on the bottom while the rest 

of the interface is relatively vertical and much thicker near the free surface.  Observe also 

the gradual loss in the coherence of the KH billows especially in the tail (e.g., see Figures 

6.1f and 6.1g) as the GC approaches the end of the slumping phase.  Though the position 

and relative size of the main billows are captured relatively accurately over most of the 

slumping phase in the 2D simulation (e.g., compare the 2D and 3D results in Fig. 6.1e), 
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the coherence of these billows is larger and the mixing inside them is weaker in the 2D 

simulation.  This is due to the absence of the 3D instabilities in the 2D simulations.  

The spanwise-averaged concentration contour plots in Fig. 6.2 visualize the 

evolution of the current in case CL (R=1.78) in the 3D simulation and experiments 

(Hacker et al., 1996).  The arrow indicates the position of the reflected bore.  The 

simulation results are presented at time instances past the time for which experimental 

data is available.  This is important as experimental visualizations were reported only 

until the end of the slumping phase (Fig. 6.2j, t/t0=12.4).  In the 3D simulation the 

evolution of the current was studied until t/t0~40, thus covering a significant amount of 

time for which the GC was in the inviscid phase.  In the same figure, several frames show 

both the 2D and 3D solutions. 

Fig. 6.2a shows that the flow is relatively symmetric with respect to the initial 

position of the gate (x0=0.56h) before the bore hits the end wall (t<1.8t0).  Interfacial 

billows start forming on the interface between the lock fluid and the lighter ambient fluid.  

The mixing is strongest in the interface region.  As the current develops (subsequent 

frames in Fig. 6.2), the interfacial vortices grow in size, are stretched and deformed by 

3D flow instabilities and eventually break into smaller, highly 3D turbulent eddies before 

diffusing in the ambient flow (see also discussion of Fig. 6.4).  As the coherence and 

energy of the large-scale KH billows diminish, small-scale mixing phenomena become 

dominant.  As a consequence, the flow in the interface region and over most of the body 

of the GC becomes mildly stratified. 

Comparison of the distributions of the concentration contours in Figures 6.2a to 

6.2j show that the 3D simulation of case CL successfully captures the overall shape of the 

GC during the slumping phase, the dimensions of the region of unmixed fluid at the head 

and the formation of the stratified tail region in which the action of the small 3D turbulent 

eddies is very efficient in enhancing the mixing.  For example, the length and shape of 

the unmixed region at the head are very well reproduced in the 3D simulation at t/t0=5.6 
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(Fig. 6.2e).  In the later stages of the slumping phase (Fig. 6.2j), the concentration 

distribution in the mildly stratified region behind the head is well predicted.  In the D 

simulation, the growth of the 3D instabilities and their interaction with the KH vortices 

shed in the formation region behind the front was captured well.  This is in stark contrast 

to results obtained from a 2D simulation (Fig. 6.2j).  In general, in the 2D simulations, 

though the front position is correctly predicted, the KH billows maintain their coherence 

over the whole body of the GC such that the mildly stratified tail region is practically 

absent.  However, over the initial stages of the slumping phase (e.g., see 2D and 3D 

results in Fig. 6.2d), when 3D effects are not very important, the 2D predictions are in 

much better agreement with experiment and 3D simulations.  The gate removal in the 

experiment introduced additional secondary motions (Fig. 6.2a).  This explains some of 

the differences observed in the tail region between simulation and experiment at earlier 

times (Figures 6.2b and 6.2c).  The KH billows in the tail region appear to be slightly 

more coherent in the simulation until the end of the slumping phase.  As the current 

transitions to the inviscid phase (Figures 6.2k to 6.2m), the flow at the front starts mixing.  

As a consequence, the highest concentrations are observed to occur in a small elongated 

near-bed region starting some distance behind the front (see concentration contours in 

Fig. 6.15b).  Results from a 2D simulation (Fig. 6.2m) show that large-scale energetic 

KH billows are still clearly observable at large distances behind the nose.  Their 

convective velocity is decaying in time but, because of the absence of 3D instabilities, 

they are less affected by viscous effects and maintain their coherence for much longer 

times.  This is the reason why a tail region, similar to the one observed in the experiment, 

cannot develop and the relatively compact region of higher concentration fluid inside the 

head is not present.  In comparison, the GC in the 3D simulation at the same moment in 

time (t/t0=25) maintains the classical shape observed in experimental visualizations 

conducted during the slumping phase (Simpson, 1997).  Additionally, the front position 

in the 2D simulation is situated behind the one predicted by the 3D simulation.  At t/t0=25 
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the difference is equal to 0.77h.  This is due to a steeper decay of the front velocity during 

the inviscid phase in the 2D simulation.  

Qualitatively, the evolution of the GC at the higher Grashof number in case CH is 

similar to the one observed in case CL.  The shapes of the two GCs are very similar 

during the acceleration phase (Fig. 6.2a), when 3D effects are negligible.  The front 

travels slightly longer distances in the CH simulation during the slumping phase.  For 

example, at the end of the slumping phase (Fig. 6.2j) the difference is close to 0.4h.  The 

differences between the positions of the front in the two simulations grow significantly as 

the current transitions into the inviscid phase. At t/t0=25 the difference is about 1h.  This 

difference can be related to the fact that in the CH simulation the streamwise gradient of 

the concentration across the front in the near-bed region is larger compared to the CL 

simulation at the same non-dimensional time (e.g., compare concentration contours at 

t/t0=16 in Fig. 6.15).  In both simulations the energy contained in the large scale 

structures appears to decay significantly in the inviscid phase, such that at t/t0=25 (Fig. 

6.2m) no large-scale coherent structures can be observed over the body of the current at 

distances greater than 1.5h from the front.   

The non-dimensional spanwise-averaged SGS viscosity contours for case CL (see 

Fig. 6.3) clearly show that the turbulence intensity in the range of the smallest resolved 

scales (around grid size level) has increased substantially between the initial stages of its 

evolution (t/t0=4) and a time instance after the end of the slumping phase (t/t0=16).  The 

dynamical model correctly predicts large values of the SGS viscosity around the KH 

billows that are shed from the formation region and around the interface between the GC 

and the ambient fluid.  It shall be shown in the discussion of Fig. 6.4 that the interface at 

t=16t0 is populated by small scale energetic 3D eddies between x/h=4 and the front 

region.  Additionally, the cores of the KH billows in the head region and over the 

upstream part of the tail are strongly distorted and stretched.  This explains the larger 

values and increased thickness of the band of high SGS viscosity values observed around 
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the interface at t/t0=16 compared to t/t0=4. Relatively large values of the SGS viscosity 

are present inside the region close to the end wall at t/t0=4.  As the mesh, close to the end-

wall, is fine enough to resolve the attached boundary layers and the other flow structures, 

it appears that, as a result of the interaction of the backward propagating bore with the 

end wall, a large amount of small scale eddies are generated for x/h<0.7.  These 3D 

eddies are thought to be one of the main source of 3D instabilities in the initial stages of 

the development of the current during the slumping phase.  The SGS model also correctly 

predicts very small SGS viscosity values in the downstream part of the tail (x/h<2.5 in 

Fig. 6.3b) where the flow relaminarizes.   

The influence of the SGS model is even more important in determining the 

evolution of the current in the CH simulation.  As the dynamic model is overall much less 

dissipative than the constant coefficient version, this means that the damping of the 

resolved scales will be lower.  Thus, one expects that the use of the dynamic model will 

make a significant difference in the accuracy of the predictions at Grashof numbers of the 

order of 1012, where the values of the SGS vorticity in the regions where the flow is 

strongly turbulent are one to two orders of magnitude higher than the molecular viscosity. 

Fig. 6.4 visualizes the interface between the GC and the ambient fluid for cases 

CL and CH using a concentration isosurface (C=0.5) at t=16t0 during the inviscid phase. 

Shifting lobes divided by deep clefts can be observed in the front part of the advancing 

head.  Billows that are  formed due to the amplification of the KH instabilities are present 

in the shear zone (mixing layer) at the upper part of the head region between the front 

(x~7.2h) and x~6.0h.  Though these structures are deformed in the spanwise direction, the 

billows appear to extend over most of the entire width of the computational domain 

(~1h), suggesting that the formation of these structures is a predominantly 2D process.  

The lobes and clefts at the front induce noticeable 3D perturbations of the cores of the 

KH billows in the formation region in both CL and CH simulations at this stage of the 

evolution of the current, as observed in the insets showing the front region.  This differs 
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from the flow evolution during the slumping phase when the interaction between the KH 

billows in the formation region and the lobes is reduced.  The amplitude of the interface 

oscillations associated with the presence of these billows is growing between the region 

where they form and x~4.0h.  The flow inside the head region is strongly turbulent even 

in the CL simulation.  The 3D turbulent eddies from the near bottom-wall region (see also 

discussion of Fig. 6.11) are swept into the upper parts of the head where they disturb the 

interfacial vortices and force the transition to turbulence in the mixing layer.  Behind the 

head region the flow remains strongly turbulent for a relatively long distance, but the 

energy balance between the small scales and the large scales changes as one gets away 

from the head region.  The energy associated with the small scales is growing 

substantially while the coherence of the large-scale coherent structures is practically lost.  

The region with x<6h is populated with small scale energetic eddies that are very 

effective in enhancing the local mixing.  These eddies produce the relatively mildly 

stratified region behind the head of the GC that is observed in the spanwise averaged 

concentration contours in Figures 6.2 and 6.16.  Eventually, these small-scale eddies, that 

lose their energy by mixing the lock and ambient fluid (see second inset in Fig. 6.4), 

dissipate and the flow starts to relaminarize.  For example, at t~16t0, this happens in the 

region where x<2.5h over which the interface deformations in the CL simulation are 

hardly observable. 

Comparing the coherent structures in the front region in Fig. 6.4 it is clear that the 

average dimension of the lobes is smaller in case CH compared to case CL.  This is 

confirmed by comparing the lines tracking the front position at a distance of 0.015h from 

the bed, shown at equal time intervals of ∆t/t0=1 in Fig. 6.5.  The comparison is shown 

both during the slumping phase, starting at t=3t0, and during the inviscid phase, starting at 

t=26t0, when the front velocity and the associated Reynolds number (Ref) are decaying in 

time.  At the same non-dimensional times, the average and maximum sizes of the lobes 

are smaller in the CH simulation.  These observations are consistent and compare well 
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with the experimental data obtained by Simpson (1972) which show that the mean size of 

the lobes decreases with an increase in the Reynolds number defined with the front 

velocity and the head height.  For case CL, the average and maximum size of the lobes 

are 0.065h and 0.14h, respectively, during the constant velocity slumping phase 

(Ref~10,900).  These values are within 10% of the experimental observations of Simpson 

(1972).  The average and maximum lobe sizes are 0.09h and 0.19h during the self-similar 

phase at t/t0=29 when Ref~4,600.  The mean size of the lobes measured by Simpson 

(1972) is around 0.095h, in excellent agreement with the simulation.  For case CH the 

mean size of the lobes is 0.03h during the slumping phase and 0.06h at t/t0=29 during the 

self-similar inviscid phase. 

The topology of the flow in the nose region in a coordinate system translating 

with the front velocity is shown in Fig. 6.6 at two time instances: one when the GC is in 

the slumping phase (case CL) and the other when GC is in the self-similar phase (cases 

CL and CH) at t~16t0.  In all three frames the flow topology is similar in the sense that 

the foremost point (nose) is not collocated with the stagnation point.  This is also 

consistent with the flow topology observed during the slumping phase for infinite-volume 

lock-exchange flows (see discussion in Chapter 5).  Comparison of Figures 6.6a to 6.6c 

shows that the nose is situated closer to the bed, and the unstable stratified region 

between the nose and the stagnation point is getting smaller as Ref increases. This is true 

in two situations: the first is when the comparison is made between the slumping (Fig. 

6.6a) and inviscid phases (Fig. 6.6b) for the same GC and the other is when the 

comparison is made between two currents at similar stages of their evolution (compare 

Figures 6.6b and 6.6c) but for which the initial Grashof  numbers are different.  The 

vertical distance ∆yn between the nose and the bottom wall is ∆yn=0.039h at t=4t0 and 

∆yn=0.065h at t=16t0 for case CL.  For case CH, in which the Reynolds number, Ref, is 

about 24 times higher compared to case CL, ∆yn=0.014h at t=16t0 which corresponds to a 

decrease of more than 4 times.  The distance between the stagnation point and the bed is 
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also strongly dependent on the instantaneous value of Ref.  The ratio of the flux of light 

fluid underneath the front, uV& , to the total expected incoming flux of light fluid, oV& =hUf, 

is close to 0.08% at t=4t0 during the slumping phase and to 0.16% at t=16t0 in the CL 

simulation.  The corresponding values for the CH simulation are 0.005% and 0.01%, 

respectively.     

The final simulation (case D) was included in this study because it allows for the 

analysis of the evolution of a GC during the viscous phase when viscous forces dominate.  

If the initial Grashof number of the GC is very low, the flow is expected to remain 2D, at 

least over some distance behind the front.  A 2D simulation with R=1 was performed at 

Gr=2.8×105.  Fig. 6.7 shows the evolution of the GC at three different time instances.  At 

the first two time instances shown in Figures 6.7a and 6.7b, the current is in the slumping 

phase and the Reynolds number defined with the front velocity is Ref~100.  Observe that 

as the current propagates, the size of the bulk-shaped head reduces.  However, very little 

mixing is taking place between the lock fluid and the ambient fluid.  No KH billows were 

observed to be shed because the viscosity is too high to allow the growth of the KH 

instabilities.  The current advances over a layer of light fluid that is comparatively much 

thicker than that observed in the simulations at Gr~109.  The ratio ou VV && /  is close to 2% 

at t=4t0, more than one order of magnitude higher when compared to case CL.  

Eventually, the size of the head diminishes to the point where the bulk-shaped head 

disappears.  This corresponds to the transition to the viscous phase (as will be shown in 

Fig. 6.9, for the given conditions the current transitions directly to the viscous phase).  

The front of the current continues to propagate downstream with a velocity that decays 

with time.  The shapes of the head region, observed during the slumping and viscous 

phases, are similar to the ones visualized experimentally for low-Reynolds-number GCs 

by Schmidt (1911) and reproduced by Simpson (1997).  The small, jet-like 2D ejections 

of light fluid in Figures 6.7b and 6.7c are due to the unstable stratification between the 

layer of heavier fluid inside the GC and the bottom layer of lighter fluid that is overrun 
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by the current as it tries to rise.  The instability is expected to be three-dimensional in 

reality.     

6.3 Front Velocity 

As in Chapter 5, the front velocity is calculated from the position of the front in 

the spanwise-averaged concentration contour plots.  The bore position and associated 

bore velocity are difficult to directly estimate from the concentration contours (e.g., from 

Fig. 6.2) because the bore propagates into the stratified layer of fluid that corresponds to 

the body of the current.  A more accurate way to determine the bore position is to plot the 

temporal evolution of the concentration on a line situated at a small distance (y/h=0.1) 

from the bottom.  The C(x,t) plots are shown in Fig. 6.8 for cases CL and CH.  In both 

plots a dark region in the form of a triangle is observed.  The boundaries between the 

dark region and the remaining domain are marked with thick lines.  The two lines that 

intersect at a small angle correspond to the front and bore trajectories.  As these 

trajectories x=x(t) are close to straight lines, the front and bore velocities should be 

approximately constant until the position and time at which the intersection takes place 

(see arrow in Fig. 6.8).  The slope of the lower line, which makes a smaller angle with the 

time axis, corresponds to the speed of the front while the slope of the top line corresponds 

to the speed of the reflected bore.  Observe also that the top line cuts through an array of 

relatively dark streaks.  These streaks correspond to the passage of KH billows over the 

y/h=0.1 line.  The intersection of the two lines corresponds to the start of transition to the 

inviscid phase.  In case CL, the coordinates of the intersection point are xf/h~5.5, t~11.5t0, 

while in case CH the coordinates are xf/h~5.5, t~10t0.  The non-dimensional streamwise 

length, ( ) 00 xxxl f −= , where xf is the front position, is close to 8.8 in both cases.  These 

values are consistent with experiments and theory (Rottman & Simpson, 1983).   

Careful inspection of the slopes of the front and bore trajectories shows that both 

the front and bore velocities are slightly higher in the CH simulation.  The increase of the 
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front velocity with the Grashof number during the slumping phase is consistent with the 

results obtained in Chapter 5 for infinite-volume lock exchange flows, where the GC 

remains indefinitely in the slumping phase.  In the cases analyzed in this chapter, the 

front trajectory starts curving up and its slope with the time axis starts decaying once the 

bore catches the front (see Fig. 6.8 for t>11t0).  This corresponds to the expected decay in 

time of the front velocity during the inviscid phase.   

The non-dimensional front, Fr=Uf/ub, and bore, Ubore/ub, velocities during the 

slumping phase that are inferred from Fig. 6.8 are 0.45 and 0.62 for case CL and 0.485 

and 0.65 for case CH.  The results for the other simulations (cases A, B, and D) are 

summarized in Table 6.3.  It is interesting to notice that though the increase of the 

Grashof number between cases CL and CH produced a 6 to 7% increase in the front and 

bore velocities, their ratio remained practically unchanged at 1.35.  In fact, the ratio 

changed only from 1.33 in case D to 1.36 in case A over a very wide range of Grashof 

numbers (105-1012).   

The values of Ref are known from experiments for cases A, B and CL.  As one 

can see in Table 6.2, the agreement with the values inferred from the simulations is 

excellent.  The value of the aspect ratio, R, does not appear to have a large influence on 

the value of Fr.  The smallest non-dimensional front velocity (Fr=0.37) is observed for 

case D when Ref~98.  The value of 0.485 obtained in case CH (Ref~248,000) approaches 

the theoretical value (Fr=0.5) obtained by Benjamin (1968) and Shin et al. (2004) for 

full-depth lock-release inviscid currents during the slumping phase in which the 

dissipative losses at the bottom wall and mixing due to presence of interfacial billows are 

neglected.  Keulegan (1958) measured a front speed Fr=0.48 at Reynolds numbers 

around 150,000.    

Fig. 6.9 shows the temporal evolution of the front position in a log-log scale for 

cases CL, CH and D.  For t/t0>2.5, a region in which the slope is approximately constant 

and equal to one is present in all the cases.  This is mainly due to the fact that the 
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buoyancy force at the front remains practically constant as long as the flow at the head of 

the GC, just behind the front, remains unmixed (C~1).  This region in Fig. 6.9 

corresponds to the slumping phase.  Once the fluid just behind the front starts mixing, the 

density difference between this fluid and the ambient fluid on the other side of the front 

starts decaying.  As a consequence the driving force decreases and the front starts 

decelerating.  For cases CL and CH there is a change in the slope of the front trajectory 

between t=10-12t0 (end of the slumping phase) and t~20t0 (end of the transition to the 

inviscid phase).  For t>20t0 the slope in the log-log plot again becomes practically 

constant and equal to approximately 0.64 very close to the theoretical value of 2/3.  This 

slope corresponds to a decay of the front velocity in time proportional to t-1/3.  The change 

in the slope, in case D, takes place faster.   Similar to cases CL and CH, the front 

trajectory reaches again a constant slope after the end of the slumping phase.  This slope, 

however, is equal to 1/5.  It is equal to the expected theoretical value for the variation of 

the front position with time during the viscous phase (Rottman and Simpson, 1983) and 

corresponds to a velocity decay in time proportional to t-4/5.  The current transition in case 

D directly from the slumping phase into the viscous phase was expected, as the flow and 

geometrical parameters were set according to one of the experiments performed by 

Rottman and Simpson (1983) in which such a transition was observed to take place.  

The front position at the end of the slumping phase is very close in the 2D and 3D 

simulations in cases A, B and CL, though always slightly behind in the 2D simulations 

(e.g., see Fig. 6.2j).  This is consistent with the results observed for the infinite-volume 

lock-exchange flow at Gr=2.0×109 discussed in Chapter 5.  Correspondingly, the values 

of Ref in Table 6.2 are very close in the 2D and 3D simulations.  Values from the 2D 

simulations are given in parenthesis in Table 6.2.  During the inertial phase, however, the 

differences between the front positions in the 2D and 3D simulation increases as the 

coefficient in the power law decay is somewhat underpredicted in the 2D simulation.  

This results into a too-fast decay of the front velocity.  For example, in case CL the 
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power law coefficient is close to 0.6 in the 2D simulation and close to 0.64 in 3D 

simulation.  This produces greater differences between the front positions as the GC 

continues to propagate over the inertial phase.  For example, at t=25t0 (see Fig. 6.2m for 

case CL) the front is situated at x/h=9.1 in the 2D simulation and at x/h=9.8 in the 3D 

simulation.  The underprediction of the front velocity by the 2D simulations is clearly a 

consequence of the fact that three-dimensional effects cannot be accounted for in these 

simulations.  In fact, it is well known that the drag coefficient is overestimated in 2D 

simulations of the flow past a bluff body, including past a surface-mounted body, 

compared to both experiments and 3D simulations in which secondary instabilities in the 

spanwise direction can develop and lower the coherence of the eddies behind the body.  

One can idealize the present flow as corresponding to a bluff (nose shaped) body moving 

in a still fluid at a certain speed along the bottom boundary.  The overestimation of the 

drag in the 2D simulations results in slower front velocities. 

The simulation results are used to obtain more information on the GC evolution 

during the acceleration phase and the transition to the slumping phase.  The position and 

velocity of the forward propagating front and backward propagating bore (before 

reflection at the end wall takes place) are plotted in Fig. 6.10 for cases CL and CH.  The 

evolution is qualitatively very similar in both cases, except for the fact that the front 

moves slightly faster in case CH.  For t>3.5t0 the front velocity start oscillating around 

the mean value corresponding to the slumping phase.  Up until 0.9t0, the bore and the 

front develop practically symmetrically with respect to the initial position of the lock gate 

(x=x0).  Then, the bore starts being influenced by the presence of the end wall and its 

velocity decays in a very similar way to the one it had accelerated for t<0.9t0.  Its velocity 

becomes equal to zero when the bore hits the end wall and is reflected.  This happens 

around t=1.85t0 in case CL and at t~1.75t0 in case CH.   At t~0.9t0 the front velocity is 

slightly higher than the constant slumping phase value for both simulations.  In fact, in 

case CH the front velocity continues to increase until t~2t0, when it becomes equal to 



www.manaraa.com

 

 

123

0.55ub, before decaying in a non-monotonic fashion toward the asymptotic value.  This 

variation of the front velocity is similar to the one observed in the case of an infinite-

volume lock-exchange flow discussed in Chapter 5 (the definition of the length scale h 

and thus of t0 is different).  

6.4 Analysis Of Near-Wall Flow Structures And Spatial 

Distribution Of The Wall-Shear Stress 

High and low speed velocity streaks are expected to form very close to the bed, as 

the Reynolds number defined with the height of the current in the head region and the 

front velocity is above 5,000 in cases A, B, CL and CH both over the slumping phase and 

over the initial part of the self-similar phase.  To investigate this, the streamwise velocity 

contours in a horizontal plane situated at y+~11 from the bottom wall are plotted in Fig. 

6.11b along with the out-of-plane vorticity contours on the bottom wall (two vertical 

vorticity levels of equal magnitude but of opposite sign are shown in Fig. 6.11a) for case 

B at t/t0=5 during the slumping phase.  To make the analysis of the structure of the near-

wall flow relative to the position of the head of the current easier to follow, the 

concentration contours in an x-y plane at the same time instant are shown in Fig. 6.11c.  

A streaky structure is present in the vorticity contours over the entire length of the head 

region (0.5<x/h<2.8).  These vorticity streaks are clearly associated with the high and low 

streamwise velocity streaks that develop in the immediate vicinity of the bottom wall, as 

observed by comparing the corresponding velocity and vorticity streaks in Figures 6.11a 

and 6.11b.  The velocity streaks at that position (y+~11) appear to extend only from the 

front position (x=2.8h) to x~1.3h.  Between x=1.9h and x=0.5h, the variations in the 

streamwise velocity appear mostly to be associated with the presence of KH billows at 

the interface.  These billows induce relatively large spanwise bands of low and high 

streamwise velocity and bed shear stress (see also discussion of Fig. 6.14).  Observe, for 

example, the spanwise band of low streamwise velocity present at x~1.7h and the band of 
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high streamwise velocity at x~0.75h.  As shown in Fig. 6.11a, streaks are present up to 

the rear of the head region but the additional velocity induced by the billows present in 

the interface region sometimes masks their presence in the streamwise velocity plot in 

Fig. 6.11b.  Behind the head region, the streaks disappear because the local Reynolds 

number is decaying below values at which turbulent streaks can form or be maintained.  

The average width of these streaks is about 0.025h and their average length decays from 

about 0.8h near the front to about 0.5h toward the end of the streaky region.  The streaks 

appear to be well resolved in the simulation of case B, given the grid density used in the 

spanwise direction.  As discussed in Chapter 5, the presence of these streamwise velocity 

streaks is associated in channel flows with the legs of the hairpin like vortices that form 

over the near-bed region.  These vortices can convect some of the near-bed fluid away 

from the bottom wall.  Their presence also explains the streaky structure of the 

concentration field that is observed underneath the head of the GC (not shown).   

As discussed in the introduction, prediction of the amount of sediment that 

compositional currents entrain during their propagation (e.g., each time a lock structure at 

a dam facility is operated) is extremely important in practical applications of GC flows in 

rivers and estuaries.  This sediment is carried some distance in the form of a turbidity 

current before the sediment deposits again.  To be able to estimate the scour produced by 

each passage of the current, information on the bed shear stress distribution at the 

different stages of its evolution is necessary.  As in these applications the Grashof 

numbers of the compositional GCs are very high, information about the bed shear stress 

distributions obtained from numerical simulations at Grashof numbers as high as possible 

is of great interest.   Additionally, information on the variation of these distributions over 

a range of Grashof numbers over which the GC is turbulent can serve to estimate scale 

effects.     

Figures 6.12 to 6.15 compare the friction velocity distributions (uτ/ub) obtained in 

the CH and CL simulations at t/t0=2, 4, 8 and 16, respectively.  The position and shape of 
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the GC is also shown using spanwise-averaged concentration contours.  The number of 

mesh points in the spanwise direction in the CL simulation is sufficient to accurately 

capture the streamwise velocity streaks.  This is not the case in the CH simulation in 

which one expects that the real streaks will be thinner than the spanwise grid size used in 

the simulation.  Still, while acknowledging this limitation, it is expected that valuable 

qualitative and even quantitative information on Grashof number effects will be obtained.  

The variation of the spanwise-averaged friction velocity in the streamwise direction 

(solid line) is shown in Figures 6.16 and 6.17 for cases CL and CH, respectively.  In both 

figures, the variation of the friction velocity in a plane z=constant is also shown (dashed 

line) to get a better idea on the spanwise variability of the distribution of uτ.  

Additionally, for case CL (Fig. 6.15) the uτ/ub distribution obtained from a 2D simulation 

is plotted to quantify the limitations of 2D simulations related to the prediction of this 

quantity.   Observe that the values uτ/ub are smaller in the CH simulation by about 50% 

compared to case CL.  This is due to the fact that uτ is proportional to Gr-1/4.  In fact, the 

values of the velocity gradients at the bed are much higher in the CH simulation. 

At t=2t0, toward the end of the acceleration phase, the overall shape of the GC in 

both simulations is similar and the flow is close to 2D.  The same is true for the 

distribution of uτ/ub which shows no variation in the spanwise direction, except inside the 

relatively narrow band starting at the front, where streamwise streaks of large uτ values 

are observed.  In the CL simulation, they are clearly delimited and followed by a short 

region of low uτ values over the whole span, while, in the CH simulation, the streaks are 

thinner, more closely spaced and there is no region of relatively low friction velocity 

behind them.  Overall, uτ is more uniform inside the streaky region that extends between 

x/h=0.9 and x/h=1.5 in the CH simulation.  

By t=4t0, at the start of the slumping phase, the region of high values of uτ has 

grown in both simulations.  In the CL simulation (Fig. 6.13b), the streaks near the front 

became more irregular, their length and width has grown, and their number has decreased 
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from 22 to about 11.  The positions of these patches of high uτ values appear to correlate 

with that of the primary and secondary lobes forming at the front.  Thin streaks of 

relatively high friction velocity, that correspond to the high speed streaks above the bed 

are observed between x/h=1.1 and x/h=1.7.  Additionally, a spanwise band, inside which 

the values of uτ are comparable to those observed at the front of the current, is present 

around x/h=0.4.  The large values are induced by the quasi 2D KH billows present 

around x/h~0.4.  The other narrow band around x/h=1.1 where the values of uτ are 

relatively high, is also due to the presence of a large billow in the interface region.   

In the CH simulation (Fig. 6.13a), the spatial distribution of uτ beneath the head of 

the GC is somewhat different.  The main differences are observed between x/h=1.25 and 

x/h=2.5 (front) where the individual streaks of high uτ values are hardly recognizable.  

Consequently, the average value of the spanwise averaged friction velocity does not vary 

much over this region, as observed in Fig. 6.17b.  Supposing that the mean values in this 

region are above the threshold value for sediment entrainment, the amount of sediment 

entrained by a GC that has the structure observed in the CH simulation will be larger than 

that of a GC that develops similarly to the current in the CL simulation.   The two 

spanwise bands of large uτ values at x/h~1.1 and x/h~0.5 are also associated with the 

presence of large billows some distance away from the bed.    

Fig. 6.14 compares the distributions of uτ at t=8t0, near the end of the slumping 

phase.  In the CL simulation (Fig. 6.14b), the region containing the streaks of high uτ 

values behind the front has enlarged to 1.4h from 0.9h at t=4t0.  The only other region 

where relatively high uτ values are observed is around x/h=1.7, behind the KH billows 

centered at x/h=2.2.  The fact that the position of the spanwise band of high uτ values 

does not correspond exactly to the one of the billows can be surprising, at first.  In fact, 

inspection of several frames has shown that in most cases a band of large uτ values is 

present between two KH billows in the interface region.  The same phenomenon is 

observed in Fig. 6.14a for case CH.  Indeed, if one looks at the streamline patterns in a 
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system of reference translating with the front velocity (second frame in Fig. 6.14a), one 

observes that the regions of high uτ values at x/h~1.75 and x/h~3.0 are situated beneath a 

vortex whose center is close to the bottom surface, while the billows educed using 

concentration contours are centered around x/h=2.2 and x/h=2.8.   

In the CH simulation, large values of uτ, comparable to the ones observed in the 

same simulation at earlier times, are observed between x/h=1.7 and x/h=4.4 (front).  The 

spanwise bands of high uτ values are still present but, in many cases, they no longer 

extend over the whole width of the domain (e.g., x/h~2.2).  Their axis is deformed in the z 

direction (x/h~2.9), consistent with the structure of the large-scale vortices in the 

interface region.  The relatively uniform region of high uτ values behind the front is still 

present and its length is approximately the same as at t/t0=4.   The total surface over 

which large values of the friction velocity are observed is much larger than the 

corresponding one in the CL simulation and somewhat larger than the one observed in the 

same CH simulation at the start of the slumping phase.    

Fig. 6.15 shows the distributions of uτ/ub during the inertial phase at t=16t0 when 

the front velocity and the local Reynolds number have decayed to less than 50% of their 

values during the slumping phase.  This should have a larger influence on the CL 

simulation where the local Reynolds number behind the front region comes close to, or is 

lower than, the one at which turbulence can be sustained in the near wall region.  Indeed, 

the only region where the values of uτ are comparable to the largest levels observed 

during the slumping phase are situated behind the front and over a part of the spanwise 

band centered at x/h=4.9 that forms between two KH billows situated at 4.4h and 5.7h 

(Fig. 6.15b).  In case CH, though the levels of uτ have dropped over most of the GC, they 

remain relatively high especially between x/h=5 and x/h=7.8 (front).  Spanwise bands of 

high uτ values are normally situated in between the KH billows (e.g., compare the bands 

centered around x/h=4, x/h=5.4 and x/h=6.2 in the uτ/ub plot with the position of the 

billows observed in the concentration plot in Fig. 6.15a).  The flow over the head and 
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over most of the tail region remains turbulent, consistent with the low wavelength 

oscillations observed in the friction velocity distribution.   

The spanwise averaged plots of uτ/ub in Figures 6.16 and 6.17 serve to quantify 

the differences in the spatial and temporal evolution of the bed-friction velocity between 

the CL and CH simulations.  In the CL simulation the largest values of uτ/ub are close to 

0.04.   If one arbitrarily defines a threshold value for sediment entrainment to occur at 

values larger than half of this value, then one can see that the length of the region which 

cannot entrain sediment behind the front of the current increases from about 0.2h at t=4t0 

to 1.3h at t=8t0 and to 4.5h at t=16t0.  In case CH the largest values of uτ/ub are close to 

0.02.  Assuming the threshold value is 0.01 then, compared to case CL, the length of the 

region that cannot entrain sediment is smaller during the inviscid phase (3.2h at t=16t0) 

and the total length of the regions that can entrain sediment is higher beginning with the 

slumping phase (e.g., 3h in case CH compared to 2.5h in case CL at t=8t0 and 4.3h in 

case CH compared to 2.5h in case CL at t=16t0).   

The instantaneous values of uτ/ub in a z=constant plane show that the amplitude of 

the fluctuations around the spanwise-averaged values are generally smaller in the CH 

simulation compared to the CL simulation.  This is especially so in the head region, 

which is consistent with the greater homogeneity of the uτ distribution in the spanwise 

direction.  Finally, the distribution of uτ/ub obtained from a 2D simulation of case CL 

appears to correlate poorly with the spanwise-averaged distribution obtained from the 3D 

solution.  The main reason for this is the presence of strongly coherent billows at the top 

of the head region and over the tail (e.g., see Fig. 6.2m) that strongly modify the bed-

shear stress distribution in the streamwise direction. 

6.5 Energy Budget 

The variation in time of the total kinetic energy, Ek, total potential energy, Ep, and 

the time integral of the total dissipation, Ed, are shown in Fig. 6.18 in linear-linear, log-
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log and linear-log scales.  The exact definition of these quantities is given in Chapter 5.  

The main difference between the present simulations and the ones discussed in Chapter 5 

is that in the present simulations the total potential energy is finite due to the finite 

volume of the initial lock fluid (assuming C=0 for the ambient fluid).  The three terms are 

integrated over the volume of the computational domain and non-dimensionalized with 

the initial value of the total (potential) energy.   

As observed from Figures 6.18a and 6.18b, during the initial phases of the 

formation of the current, before the backward propagating bore starts interacting with the 

end wall, the flow associated with the formation of the bore and of the bottom 

propagating GC is essentially inviscid and characterized by a fast decay of the potential 

energy which is converted into kinetic energy (see also Fig. 6.19a for t<1.8t0).  The 

motion starts from rest and the velocity increase in time is close to linear (constant 

acceleration).  This translates into an increase of the total kinetic energy with time 

proportional to t2 for t<1.8t0 independent of the value of the Grashof number, as shown in 

Fig. 6.18b where the slope of the straight line approximating the variation of Ek in both 

simulations is equal to two.  The maximum value of Ek is reached around t/t0=2.  By that 

time about 61% of the initial potential energy was essentially converted into kinetic 

energy (59%).  The difference is due to the dissipative losses.  The increase of Ed in the 

CL simulation appears to be proportional to t2.36 as shown in Fig. 6.18b.  In the CH 

simulation, the initial increase is similar but then, starting at t~0.6t0, the slope increases 

sharply, such that by t=1.2t0 the values of Ed in the two simulations are practically 

identical.  The temporal decrease of the potential energy and the associated increase of 

the kinetic energy between 0.7t0 and 3t0 are logarithmic as clearly observed from Fig. 

6.18c, where these variables are plotted in the linear-log coordinates.  

Most of the differences between the energy balance in the CL and CH simulations 

occur during the slumping phase, as observed in Fig. 6.18a.  The increase in Ed is larger 

in case CL and, conversely, the decay of Ek is smaller such that, by the end of the 
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slumping phase (t~10-11t0), the difference between the corresponding values of these two 

components of the energy budget is about 6-8% of the total initial energy.  Meanwhile, 

the variation of the potential energy appears to be very similar in both simulations.  

Finally, the decay rates of the kinetic energy, potential energy and total dissipation are 

just slightly dependent of the Grashof number once the current starts transitioning toward 

the inviscid phase, as observed from comparing the CL and CH curves in Fig. 6.18 for 

t>11t0.  The difference in the energy balance over the slumping phase translates into 

values of Ed and Ek in the CL simulation (Fig. 6.18a) which are consistently 6-8% higher 

and, respectively, smaller compared to those observed in the CH simulation.  However, 

the shape of the curves showing the variation of Ek and Ed are very similar.  The levels of 

Ep in the two simulations are very similar over the inviscid phase, though they are slightly 

higher (by about 1%) at most time instances in the CH simulation.   

By t=7t0 during the final stages of the slumping phase, after the kinetic energy 

reached its peak and started decaying because of the strong increase in the dissipative 

losses, the variation of all the three components of the integral energy budget becomes 

logarithmic (see Fig. 6.18c).  The temporal variation of the three components is very well 

approximated by lines of constant slope in the highly resolved CL simulation.  The 

functions that approximate the variation of the three components for t>7t0 are: 

Ep/Ep0=  0.53-0.10ln(t/t0)         (6.1) 

Ek/Ep0=  0.85-0.19ln(t/t0)         (6.2) 

Ed/Ep0=-0.38+0.29ln(t/t0)         (6.3) 

The temporal evolution of the viscous (ε0) and SGS (εt) components of the total 

dissipation rate (ε) in Fig. 6.20 show, as expected, that in the CH simulation, where (over 

the simulated time period) the flow remains strongly turbulent inside the head and tail of 

the gravity current, the εt/ε ratio is around 85% to 90% for t>7t0.  In the CL simulation, 

however, the maximum in the εt/ε ratio is 35% at t~6t0 when both the viscous and SGS 

components peak.  The ratio in the CL simulation then decays, as the current continues to 
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propagate in the slumping and inviscid phases (e.g., εt/ε=25% at t=16t0).  Interestingly 

though, the relative contributions of the viscous and SGS components in the two 

simulations are very different. The temporal variation of the total dissipation rate after the 

current finishes its transition to the slumping phase (t~20t0) are very similar for both 

simulations. 

6.6 Spatial Distribution Of The Dissipation 

Figures 6.21 and 6.22 show the horizontal and vertical distributions of the local 

dissipation rate integrated over x=constant and y=constant planes, respectively.  The 

mathematical definitions of  23ε , 13ε    and their SGS components 23
tε  ,  13

tε  are given in 

Chapter 5.  The distributions are shown at t/t0=2, 4, 8 and 16.  The horizontal distribution 

of 23ε  in Fig. 6.21 helps to understand over which region of the GC most of the 

dissipative losses occur at the different stages of its evolution.  For example, having 

information on the split between the dissipative losses in the head and tail regions is 

important for validating or calibrating simpler integral or theoretical models.   

At t=4t0 (start of the slumping phase), the dissipation in the tail region (x/h<1.2) is 

larger in the CL simulation.  The same observation applies when comparing the two 

distributions at t=8t0 toward the end of the slumping phase when the tail starts at x/h~2.9 

in both simulations. The overall difference is much smaller over the head region, though 

the total dissipation is slightly larger in the CL case.  Thus, the difference in the integral 

of the total dissipation Ed that builds over the slumping phase between the two 

simulations (Fig. 6.18a) is due primarily to the larger dissipation over the tail region in 

the CL simulation.  As the GC transitions toward the inviscid phase (e.g., compare 

streamwise distributions at t/t0=16), the variations of Ed over the head and tail regions in 

the two simulations are similar both qualitatively and quantitatively.  This is consistent 

with the fact that, as shown in Fig. 6.19, the total dissipation rate ( 11
23 )(

1

dxx
L

∫= εε  ) in 

the two simulations are very close for t>10t0.  Though the streamwise distributions of 23ε  
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are very close, the contribution of the SGS component (dashed line in Fig. 6.21) is quite 

different in the two simulations.  In the CH simulation, the SGS component accounts for 

more than 80% of the total dissipation over practically the entire length of the GC.  This 

is true even at t=16t0 during the inviscid phase.  The total and SGS dissipation rate 

become very small in the two simulations for x/h<3 at t/t0=16 suggesting that the flow 

relaminarizes in that region.  Observe also that especially in the CL simulation the values 

of 23ε  during the slumping phase are large starting immediately behind the front.  This is 

due mostly to the dissipation inside the thin shear layers that define the front and to the 

near-bed dissipation.  The values of the local dissipation rate inside the region just behind 

the front (energy-conserving head) are relatively low.   

The vertical distribution of  13ε  (Fig. 6.22) during the acceleration phase (t/t0=2) 

is similar in the two simulations, with most of the dissipation occurring between y/h=0.25 

and 0.65.  The only difference is the amount of dissipation in the near bed region 

(y/h<0.05), which is close to 23% of the total dissipation ε in the CL simulation and only 

5% in the CH simulation.  Though the maximum values over the near-bed region are 

comparable, the thickness of the near bed region where 13ε  is high is larger in the CL 

simulation due to the increased thickness of the boundary layer on the bottom wall.  The 

relative amount dissipated in the near bed region increases as the current transitions into 

the slumping phase.  The values at t/t0=4 are 31% and 8% for cases CL and CH, 

respectively.  By t/t0=4, large billows are already present behind the head.  This explains 

why the vertical coordinate where the maximum of 13ε  outside the bed region occurs is 

lower in both simulations at t/t0=4.  During the end of the slumping phase (t/t0=8) the tail 

becomes more homogeneous and, as observed in the discussion of Fig. 6.21, contributes 

the largest amount to the total dissipation.  Most of the large-scale structures in the tail 

region are situated at distances of 0.3-0.35h from the bed which also corresponds to the 

position of the maximum of 13ε  in Fig. 6.22 at t/t0=8.   
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As the energetic structures that populate the tail get closer to the bed for t/t0>8, a 

clear distinction between the near bed region and the region where most of the dissipation 

is due to the large-scale interfacial structures and their interaction with 3D flow 

instabilities cannot be made, especially for the CH simulation.  In the CL simulation the 

contribution of the near-bed region decreases from 15% at t/t0=8 to 11% at t/t0=16.  The 

total dissipation rate starts decaying as the current transitions to the inviscid phase.  This 

is also observed by comparing the values of  )(13 yε  at practically all levels between 

t/t0=8 and t/t0=16.  The position of the maximum is situated closer to the bed as the height 

of the head starts decaying and as the region where most of the dissipation occurs in the 

tail moves closer to the bed.  In the CL simulation, the SGS component, 13
tε , makes a 

significant contribution to 13ε   (~30-40%) in the regions where the KH billows and the 

other large-scale structures are deformed and stretched by the small scale turbulent 

eddies.   

As also shown for the simulations discussed in Chapter 5, most of the dissipation 

in the near bed region is due to the streamwise velocity gradients in the vertical direction.  

The contribution of the dissipation term 13
12ε  containing these velocity gradients is shown 

with the dashed-dotted line in Fig. 6.22.  Indeed, in the near-bed region 13
12ε  is found to be 

very close to 13ε  in both simulations.  

6.7 Spectral Content Of The Flow 

The time histories of the instantaneous, spanwise velocity component and scalar 

concentration are plotted in Fig. 6.23 at several stations situated at 0.2h from the bed in a 

z=constant plane and at x/h=0.7, 2.0, 5.0 and 9.0 for the CL simulation. The intensity of 

the turbulent fluctuations (e.g., spanwise fluctuations are shown in Fig. 6.23), as the 

current reaches a certain section, remains low over the time period when the “energy 

conserving” head region that contains unmixed lock fluid (C=1) propagates over that 

streamwise location.  The intensity of the fluctuations increases sharply afterwards in the 
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dissipative wake and tail regions containing mixed fluid (C <1). This can be observed by 

comparing the spanwise velocity and concentration time series for case CL at x/h=0.7 and 

x/h=2.0 which are close enough to the gate release position (x0/h=0.57) such that C =1 

behind the front at y/h=0.2.  By the time the current reaches the section at x/h=5, no 

unmixed lock fluid (C =1) is present at a distance of y/h=0.2 from the bed and the level of 

the spanwise fluctuations is high from the moment the front of the GC reaches the 

section. 

Fig. 6.24 shows the spanwise velocity power spectra in the CL simulation for the 

four stations (y/h=0.2).  No inertial range is present in the velocity spectrum at x/h=0.7 in 

the range of energetic frequencies (St=0.5 to 10) observed in the corresponding time 

series.  However, at the third station (x/h=5.0) an inertial range appears to develop for 

0.5<St<6 over which the energy decay is close to two decades.  The same is true for the 

spectrum at the last station (x/h=9). 

6.8 Summary 

Evolution of Boussinesq gravity currents formed in a finite-volume lock-release 

flow was studied using 3D LES simulations at Grashof / Reynolds numbers sensibly 

higher than those previously attempted using 3D DNS (Gr=106-107) and for longer 

simulation times.  This allowed the study of the flow physics during part of the inviscid 

phase.  Highly resolved 3D simulations were carried out for Grashof numbers in the 

range of 109-1010.  An additional simulation was carried out at Gr=1012 on a mesh 

comparable to the one used in the simulations at Gr~109-1010.  The main reason to 

perform the simulation at Gr=1012 was to understand the evolution and structure of finite-

volume lock-exchange flows at flow conditions closer to the ones encountered in most of 

the applications of practical interest.  In the simulation conducted at Gr=1012, the GC is 

expected to be closer to the inviscid state that is often assumed in theoretical models that 

are used to describe different characteristics of high Grashof number GCs.   
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Previous 3D highly resolved simulations considered only the case of an infinite 

channel (no lateral wall) compositional current (Hartel et al., 2000) where the self-similar 

inviscid phase is not present and the case of a particulate current developing in a finite 

channel (Necker et al., 2002, 2005) where the physics in the latter stages of evolution of 

the current is very different from that of a compositional current due to the deposition of 

the particles.  In these previous simulations the values of the Grashof numbers were 

around 106-107, corresponding to Reynolds numbers defined with the front velocity of 

less than 1,000, about an order of magnitude lower than the ones considered in the 

present study.   

The model was found to successfully capture most of the global parameters 

characterizing the evolution of the finite-volume lock-exchange currents.  Their structure 

was found to be similar to the one observed in the experiments of Hacker et al. (1996) 

and Rottman & Simpson (1983).  The dynamics and evolution of the GC in the 

simulation with Gr=1012 were found to be realistic and consistent with the expected 

behavior predicted by experiments and theory (e.g., the non-dimensional front velocity 

was found to be very close to the theoretical value for inviscid currents predicted by 

Benjamin, 1968 and Shin et al., 2004).  This is due in great part to the use of a dynamic 

SGS model, which is much less dissipative than the constant coefficient version. Thus, its 

use should result in more accurate predictions, especially at very high Grashof and/or 

Schmidt numbers where the LES model plays an important role.  The other reasons are 

the use of a discrete energy-conserving Navier-Stokes non-dissipative solver that enabled 

obtaining robust and accurate solutions on meshes that are much coarser than DNS 

requirements, and the use of a mesh in the wall normal direction that was fine enough to 

avoid the use of wall functions.   

Several configurations, with different depth over length ratios of the initial lock 

fluid, were considered, corresponding to the cases studied experimentally by Hacker et al. 

(1996).  The 3D simulations successfully captured the development of the lobe-and-cleft 
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structure at the leading edge of the current head, the shedding of the KH billows from the 

front region and their subsequent deformation, stretching and breaking into small scale 

3D structures that strongly enhanced the mixing at the interface between the GC and the 

surrounding fluid.  The simulation results were able to accurately replicate the observed 

evolution of the nose region and stratification within the tail, the ratio between the bore 

and front velocities over the slumping phase, the variation of the front speed over the 

slumping (Uf~t0) and self-similar (Uf~t-1/3) phases, the position of the transition between 

these two phases and the dependence of the lobe size on the front Reynolds number.  The 

topology of the flow in the front region did not change significantly as the current 

transitioned between the slumping phase and the self-similar phase and was found to be 

similar to the one observed in 3D DNS simulations at lower Reynolds numbers (Hartel et 

al., 2000).  Additionally, a 2D simulation of a low Grashof number current (Gr=2.8×105) 

was found to directly transition from the slumping into the viscous phase where the front 

speed decayed at a rate proportional to t-1/5, consistent with experiment and theory 

(Rottman & Simpson, 1983). 

High and low speed velocity streaks associated with the presence of hairpin 

vortices, similar to the ones observed in turbulent flow over no-slip surfaces, were 

identified in the near-bed region beneath the head of the GC.  As the turbulence started 

decaying in the tail and the flow transitioned back to a laminar regime behind the current, 

the streaky structure was found to disappear.  Details of the distribution of the friction 

velocity on the bottom wall were investigated at different stages of the evolution of the 

GC.  This is important especially for applications of lock exchange flows in rivers and 

estuaries with loose beds, where the bed-shear stress distribution controls sediment 

entrainment.  Scale effects were considered by comparing the friction velocity 

distributions between the simulations at Gr=2.3×109 and Gr=1012.   In both simulations, a 

streaky distribution of uτ was observed to occur over the upstream part of the head 

region.  The streaks were observed to diminish and to produce a more uniform overall 
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distribution of uτ behind the front in the simulation at Gr=1012.  Several spanwise bands 

of high and low uτ values were observed to form behind the front region.  Their position 

is related to the large-scale billows present in the interface region.  The size of the regions 

where uτ remained high was found to be comparatively larger in the simulation at 

Gr=1012, especially in the later stages of the evolution of the current.  This means that the 

higher Grashof number GC will be more effective in entraining sediment from the bed.   

It was also shown that 2D simulations slightly underpredict the coefficient in the 

power-decay law of the front velocity over the inviscid phase.  This is because 3D 

instabilities cannot develop, which results in a too high coherence of the KH billows.  

This results in substantial differences of the front positions between 2D and 3D 

simulations during the later stages of the inviscid phase.  The large coherence of the KH 

billows was also the main reason why the bed-shear-stress distribution predicted by the 

2D simulation at Gr=2.3×109 was found to be very different than the one observed in the 

corresponding 3D simulation. 

Comparison of the energy balance between the simulations at Gr=2.3×109 and 

Gr=1012 showed that the main difference occurred over the slumping phase, when the 

total dissipation rate was larger in the lower Grashof number simulation.  It was also 

observed that starting toward the end of the slumping phase, the temporal variations of 

the total kinetic energy, total potential energy and the integral of the total dissipation rate 

are logarithmic.  Investigation of the streamwise distribution of the local dissipation rate 

integrated over x=constant planes showed that the main difference between the two 

simulations occurred over the slumping phase when the dissipation rate in the tail region 

was larger in the Gr=2.3×109 simulation.  The vertical distribution of the local dissipation 

rate integrated over y=constant planes showed that in the Gr=1012 simulation the 

contribution of the near bed region is very small compared to the dissipation occurring in 

the tail and head regions over both the slumping and inviscid phases.  Finally, an inertial 

range was observed to develop in the velocity spectra in the Gr=2.3×109 simulation at 
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stations situated far enough from the initial lock gate position.  This confirms that the 

turbulence characteristics of the flow inside GCs at high enough Reynolds numbers are 

similar to the ones present in classical constant-density turbulent boundary layers and 

channel flows. 
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Table 6.1. Details of the finite-volume lock-exchange simulations during the slumping 
phase. 

Case Gr Re = Gr  L/h Aspect ratio,  
R=h/x0 

A 9.6×108 30,980 18 0.67 

B 7.7×109 87,750 9 1.00 

CL 2.3×109 47,750 13.483 1.78 

CH 1.0×1012 1.0×106 13.483 1.78 

D 2.8×105 530 18 1.00 

Table 6.2. Summary of simulation results.  

Experiment Simulation 
(2D in brackets) 

Transition 
(2D in brackets) 

Case 

Ref Fr Ref Fr Location, 
x/h 

Time, t/t0 l=(xf-x0)/x0 

A 7,000 0.45±0.01 6,890 
(6,820) 

0.44 9.9  
(10.4) 

9.7 (10.2) 5.6 (5.9) 

B 19,700 0.45±0.01 19,750 
(19,730) 

0.45 - -  

CL 11,000 0.46±0.01 10,875 
(10,755) 

0.45 5.5 (5.9) 11.5 
(12.5) 

8.8 (9.5) 

CH   248,000 0.49 5.5 10.0 8.8 

D   98 0.37 (10.1) (27.4) (10.1) 
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Table 6.3. Comparison of bore and front velocities during slumping phase for simulations 
in channels with a lateral wall. 

Case Ubore/ hg '  Uf/ hg '  Ubore/Uf 

A 0.60 0.44 1.36 

B 0.61 0.45 1.35 

CL 0.62 0.45 1.35 

CH 0.65 0.48 1.35 

D 0.49 0.37 1.33 
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Figure 6.1. Concentration contours showing temporal evolution of gravity current for 
case B: 3D spanwise averaged (left); experimental results of Hacker et al. 
(right). a) t/t0=1.4; b) t/t0=2.4; c) t/t0=4.6; d) t/t0=5.6; e) t/t0=6.6; f) t/t0=11.6; 
g) t/t0=16.6. 
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Figure 6.2.  Concentration contours showing temporal evolution of gravity current for 
cases CL and CH: 3D spanwise averaged for case CL (left); experimental 
results of Hacker et al. for case CL (middle); 3D spanwise averaged for case 
CH (right). a) t/t0=1.7; b) t/t0=2.7; c) t/t0=3.7; d) t/t0=4.6; e) t/t0=5.6; f) 
t/t0=6.6; g) t/t0=8.6; h) t/t0=10.4; i) t/t0=11.6; j) t/t0=12.4; k) t/t0=15.0; l) 
t/t0=20.0; m) t/t0=25.0. 
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a)  

b)  

Figure 6.3. Visualization of the spanwise-averaged instantaneous ratio of SGS viscosity 
to kinematic viscosity in case CL. a) t/t0=4.0; b) t/t0=16.0. 
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Figure 6.4. Visualization of gravity current interface using a concentration isosurface (C = 0.5) for 3D simulations of cases CL (left) 
and CH (right) with insets showing development of the lobe and cleft structures at the front and decay of turbulence behind 
the current at t/t0=15.0. 

Low Gr High Gr 
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a)  
 

b)  

Figure 6.5. Visualization of the development of the lobe and cleft instability for cases CL 
(left) and CH (right) in the x-z plane situated at a distance of y/h=0.016 from 
the bottom wall.  Consecutive lines indicate front position at a time interval of 
∆t/t0= 1. a) during slumping phase starting at t/t0=3; b) during inviscid phase 
starting at t/t0=26. 
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a)  

b)  

c)  

Figure 6.6. Visualization of the spanwise-averaged flow topology in the nose region 
using streamlines in a frame of reference translating with the front velocity. a) 
CL simulation during slumping phase; b) CL simulation during inviscid phase 
(t/t0=16); c) CH simulation during inviscid phase (t/t0=16). 
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a)

b)

c)  

Figure 6.7. Concentration contours showing temporal evolution of gravity current for 
case D. a) t/t0=5.0; b) t/t0=15.0; c) t/t0=30.0. 
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a) b)  

Figure 6.8. Evolution of concentration with time along the x axis.  Distance from the 
bottom wall is y/h = 0.1. a) case CL b) case CH.  
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Figure 6.9. Evolution of the non-dimensional front position with time in log-log scale. 
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Figure 6.10. Evolution of the front and bore positions and velocities for cases CL and CH 
during the initial phases of motion. 
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a)  

b)  

c)  

Figure 6.11. Visualization of the flow structure in the near wall region at t/t0=5 for case B 
simulation. a) vertical vorticity contours (vertical view from below); b) 
streamwise velocity contours showing the high and low speed streaks in a 
plane located at y+~11 from the bottom wall; c) spanwise-averaged 
concentration distribution showing the gravity current. 
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a)  
 

    

b)  

Figure 6.12. Distribution of the friction velocity uτ /ub on the bottom wall and spanwise 
averaged concentration contours at t/t0=2. a) case CH; b) case CL.  
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a)  

    

b)   

Figure 6.13. Distribution of the friction velocity uτ /ub on the bottom wall and spanwise 
averaged concentration contours at t/t0=4. a) case CH; b) case CL.  

CH 

CH
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a)    

    

b)  

Figure 6.14. Distribution of the friction velocity uτ /ub on the bottom wall and spanwise 
averaged concentration contours at t/t0=8. a) case CH in which instantaneous 
streamlines in a translating frame of reference moving with the front velocity 
are shown; b) case CL.   
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a)  
 

    

b)  

Figure 6.15. Distribution of the friction velocity uτ /ub on the bottom wall and spanwise 
averaged concentration contours at t/t0=16. a) case CH; b) case CL.  
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a)

b)

c)

d)  

Figure 6.16. Streamwise variation of the 3D spanwise-averaged (solid red line), 3D 
instantaneous (dashed red line) and 2D (solid blue line) friction velocity on 
the bottom wall for case CL. a) t/t0=2; b) t/t0=4; c) t/t0=8; d) t/t0=16. 

CL
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Figure 6.17.  Streamwise variation of the 3D spanwise-averaged (solid red line) and 3D 
instantaneous (dashed red line) friction velocity on the bottom wall for case 
CH. a) t/t0=2; b) t/t0=4; c) t/t0=8; d) t/t0=16. 

CH
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a)  

b)  

c)  

Figure 6.18.  Time history of the potential energy, Ep, kinetic energy, Ek, and integral of 
the total dissipation, Ed, in the CL (solid line) and CH (dashed line) 
simulations. a) linear-linear scale; b) log-log scale; c) linear-log scale. 
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a)  

b)  

Figure 6.19. Temporal evolution of the terms in the transport equation for the total kinetic 
energy in the CL (solid line) and CH (dashed line) simulations. 
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Figure 6.20. Temporal evolution of the total dissipation, ε, SGS dissipation, εt , and 
viscous (resolved) dissipation, ε0, in the CL (solid line) and CH (dashed line) 
simulations.  
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Figure 6.21. Streamwise distribution of the total dissipation term  ( )1
23 xε  (solid line) and 

SGS term   ( )1
23 xtε  (dashed line) at t/t0=2, 4, 8 and 16. a) CL simulation b) 

CH simulation. 
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Figure 6.22. Vertical distribution of the total dissipation term ( )2
13 xε  (solid line), SGS 

term ( )2
13 xtε  (dashed line) and dissipation term containing the vertical 

gradient of the streamwise velocity ( )2
13
12 xε  (dashed-dot line) at t/t0=2, 4, 8 

and 16. a) CL simulation b) CH simulation. 
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Figure 6.23. Time history of spanwise velocity and scalar concentration for case CL at 
four stations situated at x/h = 0.7, 2.0, 5.0 and 9.0 and at y/h=0.2.  
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Figure 6.24. Spanwise velocity power spectra (case CL) at four stations situated at x/h = 
0.7, 2.0, 5.0 and 9.0 and at y/h = 0.2. 
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CHAPTER 7  

3D LES SIMULATIONS OF INTRUSION CURRENTS 

7.1 Description Of Intrusion Currents 

The case of an IC that is propagating into a two layer ambient fluid (Fig. 7.1a), in 

which the densities of the two layers (ρ0<ρ1) are constant, is studied using highly 

resolved LES.  Only the case in which the constant density of the lock fluid, ρL, is 

between that of the two layers (ρ0<ρL<ρ1) and the initial depth of the lock fluid is equal 

to that of the channel or tank (h) in where the lock fluid is released (full-release case) is 

studied here.   In the present simulations, the interface between the two fluids is assumed 

to have zero thickness.   In experiments, this corresponds to the limiting case when the 

density gradient between the two layers occurs over a very short distance compared to the 

height of the intrusion.  The depths of the two layers are denoted h0 and h1.  The length of 

the initial volume of lock fluid is denoted as x0.  The mean density of the ambient fluid 

outside the lock is hhh /)( 1100 ρρρ +=  .  The degree of symmetry of the intrusion (e.g., 

see de Rooij et al, 1999, Sutherland et al., 2004) can be characterized using two 

parameters ∆ and ε.   The first one is defined as the difference in the depth of the two 

layers relative to the total depth ∆=(h0-h1)/h, while the second one characterizes the 

difference between the density of the lock fluid and the mean density of the ambient fluid 

)/()( 01 ρρρρε −−= LR  .  Only cases where εR=0 are considered in the present work.  

The doubly symmetric case corresponds to εR=0 and ∆=0. 

As the gate is removed instantaneously, there is a short acceleration phase in 

which the IC forms and starts propagating forward.  Meanwhile, similarly with the case 

of a finite-volume lock release bottom propagating current, two return flows are forming 

in the lower and upper layers and start propagating toward the end wall, as shown in Fig. 

7.1b.  Once they encounter the end wall, they reflect and start propagating forward, below 

and above the tail of the intrusion (Fig. 7.1c), in the form of bores with relatively constant 
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speeds (Ubore0, Ubore1) that are somewhat larger than the constant velocity of the intrusion 

front (Uf).  The IC is in the slumping phase.  Leading interfacial waves can form 

depending on the values of the main flow parameters (e.g. εR, ∆, Gr).  It is expected that 

mixing in the head region will become a factor after the bore overtakes the front and the 

front velocity will start decaying.  

Two 3D LES simulations (see Table 7.1) were conducted at a Grashof number of 

1.57×109 (Re= Gr ~38,000).  The first simulation corresponds to the doubly-symmetric 

case (h0=h1, εR=0, ∆=0), while the second one (h0=7h1, εR=0, ∆=3/4 ) corresponds to Case 

3 in the experimental study of Sutherland et al. (2004).  They are referred to as case SC 

and case NSC within the chapter, respectively.  In the experiments and simulations, the 

value of  101 /)( ρρρσ −=  was 0.02.  Some comparisons with 2D simulations are also 

provided.  The bottom and end-wall surfaces were simulated as no-slip smooth walls.  

The free surface was treated as a slip (zero shear stress) boundary.  This explains the non-

symmetry of the flow near the top and bottom boundaries in the SC simulation.  The flow 

in the spanwise direction is assumed to be periodic.   

The boundary layers on all the no-slip walls were resolved by clustering the grid 

points in the streamwise and vertical directions such that first point off the wall is situated 

at less than one wall unit (assuming turbulent flow) from the surface.  For simulations of 

ICs, this allows a more accurate study of the interactions between the return flow and the 

left end wall.  The flow field in all simulations was initialized with the fluid at rest, i.e., ui 

= 0. The non-dimensional concentration field was initialized with a constant value of one 

in the upper layer and a constant value of zero in the lower layer.  The nondimensional 

concentration of the lock fluid was equal to 0.5 and 0.125 in cases SC and NSC, 

respectively.  A random disturbance was applied on the concentration field in the lock-

gate region to accelerate the growth of 3D instabilities.  The time step in the simulations 

was 0.001t0.  The maximum Courant number was around 0.2.   
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The size of the grid was 2048×160×80 in the streamwise, vertical and spanwise 

directions, respectively, which corresponds to about 26 million control volumes.  The 

relative dimensions of the computational domain (L1=9.855h, L2=1.0h, L3=0.88h) were 

identical to the ones in the physical experiment in which h=0.2m.  The length of the 

initial lock fluid volume was x0=0.903h.  The typical size of a cell was 0.005h in the 

streamwise direction, 0.017h in the vertical direction and 0.011h in the spanwise 

direction.  Near the lateral end walls the mesh size was reduced to 0.002h.  Near the 

bottom, the mesh size in the wall normal direction was 0.001h.  As the physical Reynolds 

number associated with the intrusion was below 5,000 in both cases, the mesh is expected 

to be fine enough to resolve the dynamically important coherent structures.     

7.2 Evolution Of Intrusion Current And Coherent 

Structures 

Snapshots of the spanwise-averaged and instantaneous concentration fields are 

used in Figures 7.2a and 7.2c to visualize the temporal evolution of the intrusion in the 

SC case and to compare with experimental visualizations (Fig. 7.2b) of Sutherland et al. 

(2004).  In the experiment the dimensional value of t0 is close to 1s.   The lock gate is 

removed instantaneously, causing the lock fluid to accelerate from rest, collapse 

practically symmetrically, and start moving along the interface.  The front of the intrusion 

is already visible at t=2t0 during the acceleration phase.  As the return flows above and 

below the intrusion encounter the end wall, two forward propagating symmetrical bores 

are formed.  At t=13.8t0, the wedge shaped intrusion is practically developed and 

contains a main elongated region (head and dissipative wake) followed by a tail.  The 

position of the forward propagating bore is shown using an arrow.  As the IC propagates, 

the bore moves closer to the front, the tail elongates and contains more of the initial lock 

fluid (see also discussion of Fig. 7.20).  At t=25.8t0, the bore stops its advancement 

relative to the front in both simulation and experiment.  The last frame, just before the 
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front of the intrusion reaches the end wall, corresponds to t=37.6t0.  Observe that the 

length of the downstream bulb-shaped part of the intrusion is practically the same in the 

last two frames (see also discussion of Fig. 7.11) but the thickness of the intrusion region 

is smaller at t=37.6t0.  At all stages, the IC appears to intrude relatively symmetrically 

into the upper and lower layers of ambient fluid.  No significant deflections of the 

interface were observed in front of the intrusion, consistent with previous experimental 

investigations of the doubly-symmetric case.  This is despite the fact that different 

boundary conditions were imposed on the top (slip) and bottom boundaries (no slip) in 

the simulations.  Only small deformations, corresponding to the presence of weak 

interfacial internal waves are observed for t>20t0 in the tail region that separates the 

advancing bores in the upper and lower layers.   

In the simulation, the head thickness becomes constant at t~8t0 (start of slumping 

phase) and is equal to 0.43h, in good agreement with the experiments of Faust & Plate 

(1984) in which the interface thickness between the layers of ambient fluid, δ, was small, 

δ/h<0.1, and Ref>2,000.  Lowe et al. (2002) estimated the head thickness to be around 

0.46h based on shadowgraph measurement techniques and about 0.43h based on PTV 

visualizations for Ref~5,000-7,000.  The value is slightly below the value of 0.5h 

predicted by Benjamin (1968) for energy-conserving GCs.  As previously mentioned, the 

head thickness starts to slowly decrease for t>22t0 after the end of the slumping phase.  

The foremost point of the intrusion (or nose) remains located in the symmetry 

plane (y=0.5h) at all stages of the evolution of the flow in the SC case. This is inferred 

from the instantaneous streamline patterns in Fig. 7.3b which are shown in a translating 

system of coordinates moving with the front velocity at t/t0=5 and t/t0=10.  This is in 

contrast to observations of GCs propagating over no-slip surfaces where the nose is 

raised above the wall.  Still, relatively large-scale structures are observed to form at the 

front of the intrusion interface, as shown in Fig. 7.4c using a concentration isosurface 

(C=0.5).  This demonstrates that the flow at the front is not exactly two-dimensional and 
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that relatively large-scale structures can develop at the front of an IC, similar to the lobes 

and clefts observed in the case of GCs propagating over no slip surfaces.   

To investigate the shapes and size of these structures, the curved lines 

corresponding to the intersection between the intrusion front and the horizontal plane 

y=0.51h are shown in Fig. 7.5 at t=20t0 and t=30t0.  Also shown in Figures 7.5a and 7.5b 

are a cut through the front interface of a bottom propagating GCs in the self-similar 

inviscid phase at two time instances when Ref~6,900 and 4,600, respectively.  The results 

are taken from the LES study of Ooi et al. (2006b).  Additionally, Fig. 7.5c contains a cut 

through the front interface of a bottom-propagating GC during the slumping phase when 

Ref~29,900 (Ooi et al., 2006a).  The scale in all the plots is the same.  For the bottom-

propagating current, the mean size of the lobes clearly scales with the Reynolds number 

defined with the front velocity.  In the intrusion case, the largest structures are much 

smaller than the largest lobes observed at similar Reynolds numbers for GC over no-slip 

surfaces.  However, the shape and size of the interface deformations corresponding to the 

secondary lobes observed in the case of a bottom propagating GC are very similar to the 

ones observed for the IC in case SC (e.g., compare the interface deformations for the 

bottom propagating current at z/h<0.4 to the ones observed for the IC at t=30t0 in Fig. 

7.4b).  Though the mean lateral size of the lobes developing at the front of a bottom 

propagating GC at Ref=29,900 is similar to the intrusion at Ref~4,800, the streamwise 

length of the intrusions associated with the lobes in the Ref=29,900 simulation is a few 

times larger then the one observed in the present IC simulation.  This leads to the 

conclusion that some of the sources of instabilities present in the front region of lock 

exchange flows are common to both ICs and GCs propagating over no slip surfaces.   

The overall growth rate of the 3D instability is clearly lower in the case in which 

the no-slip surface is absent.  One of the main differences between the two types of 

currents, which may be related to the observed differences in the growth rates of the 

instabilities in the front region, is that there is much less turbulence production at similar 
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Reynolds numbers for ICs.  This is mainly due to the absence of the near-wall region.  

These findings are consistent with the conclusions of a recent paper by McElwaine and 

Patterson (2004) which are based on on-going experimental investigations.  They 

observed that any interface that propagates with relatively constant velocity normal to the 

front will eventually develop clefts.  Then, as the lobes between the clefts increase in size 

while decreasing in curvature, they become dynamically unstable and can create new 

clefts.  This mechanism is independent of the presence of a no-slip surface below the 

current.        

More details of the overall differences between IC and bottom-propagating GCs 

during the slumping phase can be inferred from Fig. 7.10, which compares the 

instantaneous vertical vorticity fields from two 3D LES simulations with similar Grashof 

numbers.  The view in Fig. 7.10a is from below the interface, between the intrusion 

current and the lower layer of ambient fluid.  The structure is very similar for the upper 

interface.  As observed in Fig. 7.10a, no streamwise streaks are present at the interface 

between the intrusion and the ambient fluid. This includes the dissipative wake region 

where the flow is strongly turbulent.  This contrasts with the vortical structure of the flow 

in the near-bed region observed beneath high Reynolds number gravity currents (Fig. 

7.10b) where a streaky structure is observed to be present over a certain distance behind 

the front.  The length of the streaky structure is determined by the condition that the local 

Reynolds number remains high enough for the flow to sustain turbulence. 

Toward the end of the acceleration phase (e.g., see vorticity fields at t/t0=5 in Fig. 

7.3) the formation and shedding of high vorticity KH billows from the wake region 

introduces an important amount of energy and momentum around the interface on both 

sides of the IC.  This energy is redistributed once the interfacial vortices roll up and start 

loosing their coherence while simultaneously mixing lock fluid with the ambient fluid.  

The stretching of the large KH billows in the SC simulation is very rapid such that by 

t=13.8t0 (Fig. 7.4a) only the first one or two billows behind the front extend over the 
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whole span of the computational domain.  These billows eventually break into small scale 

turbulence.  As this happens, wisps of fluid with density close to that of the lock fluid are 

displaced by the highly energetic 3D structures that resulted from the breaking of the KH 

billows.  Some of these wisps of fluid are then transported away from the interface.  

Then, by the action of small scale eddies, these wisps of fluid from inside the intrusion 

mix with the ambient fluid.  The amplitude of the deformations and the associated range 

of wavelengths observable on the interface in Figures 7.4a and 7.4b diminish 

considerably behind the bore indicating that very little mixing occurs inside the tail.  

Eventually, even the smaller eddies left behind the wake region will loose their energy 

and dissipate.  As a result, the flow will relaminarize some distance behind the head.   

The intrusion interface in Fig. 7.4a corresponds to a moment in the evolution of 

the intrusion when the overall dissipation rate is close to its maximum value (see also Fig. 

7.15).  After the end of the slumping phase (t~22t0), the length of the wake region has 

reduced and the amount of energy in the KH billows has diminished.  As a result, there is 

less energy available for mixing, and the interface in the tail region becomes relatively 

smooth over a shorter distance behind the wake region.  Comparison of the shape of the 

interface at t=13.8t0 and at t=37.6t0 in Fig. 7.4 offers a good illustration of this evolution. 

Several instantaneous spanwise-averaged vorticity magnitude plots are shown in 

Fig. 7.3a to further clarify the spatial and temporal evolution of the vortical structures and 

the associated mixing in the SC simulation.  Toward the end of the acceleration phase 

(t=5t0) most of the vorticity is contained in the strongly coherent quasi-2D interfacial 

vortices present over the whole length of the dissipative wake region.  By t=10t0 most of 

the KH billows no longer span the whole width of the intrusion.  Though the circulation 

associated with these billows is still very high in the formation region, the vorticity 

distribution becomes irregular indicating the presence of strong turbulent eddies near the 

interface between the dissipative wake and the ambient fluid.  At t=20t0, the length of the 

wake region has diminished considerably.  For t>20t0, the vorticity magnitude inside the 
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horizontal layers centered at y=0.75h and y=0.25h decays relatively monotonically with 

the distance from the bore, and appear to contain very little large scale structures, 

indicating that the billows lose their coherence rapidly.  For t>20t0, the vorticity levels 

are very low inside the tail region of the intrusion situated in between the two shear 

layers.   

At the start of the slumping phase some interactions are observed between 

interfacial vortices originating at the lower interface and vorticity patches from the 

boundary layer on the bottom wall that forms because of the return flow (e.g., for 

x/(h/2)<5).  However, to a large extent the vorticity distribution above and below y/h=0.5 

remains similar during the evolution of the IC.  At all time instances, a very thin but 

strong shear layer is observed around the head.  However, inside the head the vorticity 

remains low.  As will be discussed later, the dissipation occurring inside this shear layer 

is non-negligible.   

The 2D streamline patterns that are shown in Fig. 7.3b in a system of coordinates 

translating with the front velocity serve to visualize the motions inside the head and wake 

regions of the intrusion.  These motions are ignored in energy-conserving theoretical 

models of the head region.  At t=5t0, because the lock gate removal did not introduce any 

disturbances in the simulation, the main vortices in the upper and lower half of the 

intrusion are practically symmetrical and their positions correlate very well with that of 

the KH billows educed using vorticity contours in Fig. 7.3a.  The main role of these 

vortices is to advect intrusion fluid and momentum into the KH billows that will detach 

and mix with the ambient fluid while the main intrusion moves downstream.  By t=10t0, 

the growth of the 3D flow instabilities was large enough to break the symmetry of the 

flow inside the head and wake regions, but the position of the main vortices in the 

streamline plot still correlate with the positions of the main interfacial vortices (see 

corresponding arrows in the vorticity and streamline plots in Fig. 7.3).    
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Comparison of Figures 7.2a and 7.2d highlights differences in the evolution of a 

high Reynolds number lock-exchange symmetrical IC predicted by 2D and 3D 

simulations.  Although the front position and velocity predicted by the 2D and 3D 

simulations are found to be practically identical, the overall shape of the intrusion 

current, past the acceleration phase (t/t0>7), is observed to be quite different.  For 

instance, at t=13.8t0, the coherence of the KH billows in the wake region is clearly higher 

in the 2D simulation, while the flow disturbances observed over the tail are larger and do 

not appear to correspond to an interfacial wave.  Rather, they are due to the presence of 

relatively small but energetic KH billows containing fluid whose density close to that of 

the lock fluid.  Their convective velocity decays with time but, because of the absence of 

3D instabilities, they are less affected by viscous effects and maintain their coherence for 

much longer times.  Thus, the flow in the tail region in the 2D simulation is quite 

different from the one observed in the experiment and 3D simulation.  Moreover, past the 

end of the slumping phase (t~22t0), strong KH billows start mixing the lock and ambient 

fluid very close to the intrusion front in the 2D simulation.  As a result, the shape of the 

region behind the front is quite different from the one observed in experiments.  In 

contrast to that, the shape and main features of the intrusion in case SC is correctly 

predicted by the 3D simulation.  As the 3D instabilities grow, they stretch the cores of the 

interfacial vortices, rapidly alter their spanwise symmetry and break them into small 

turbulent eddies immediately behind the wake region.   

By comparing Figures 7.2 and 7.6, it is observed that the overall shape of the IC is 

very different in case NSC compared to the doubly-symmetric case.   Though the Grashof 

numbers are identical, the intrusion in case NSC propagates at a slower rate compared to 

case SC.  The details of the evolution of the intrusion current in case NSC are discussed 

below. 

Once the gate is removed, 2D KH vortices form at the interface between the lock 

fluid and the upper layer (e.g., see Fig. 7.6a at t/t0=5).  The amount of vorticity created, as 



www.manaraa.com

 

 

174

a result of the collapse of the return flow in the much deeper upper layer and its 

interaction with the end wall, is much larger than the one associated with the return flow 

in the lower layer of ambient fluid.  Beginning at the end of the acceleration phase, the 

intrusion propagates mostly in the upper lighter layer of ambient fluid.  At t=10t0, the 

nose of the current appears to be situated inside the upper layer (see also Fig. 7.8).  For 

t>20t0, the nose of the IC is collocated with the local interface between the two layers 

which is situated slightly below the level (y/h=0.125) corresponding to the two 

undisturbed layers.  In contrast to that, only slight disturbances are observed at the 

interface between the intrusion and the bottom layer of ambient fluid.  This causes the 

overall shape of the IC to resemble that of a bottom-propagating GC, where the role of 

the bottom surface is played by the slightly deformed interface between the two layers.   

Looking at the flow structures inside the upper layer in Fig. 7.6, one can see that 

the large billows appear to be more coherent in the simulation, in particular, the ones in 

the rear part of the tail region.  This is due to the fact that in the experiment, as also 

mentioned by Sutherland et al. (2004), the mixing between the lock fluid and the upper 

layer fluid was initially dominated by the vorticity produced by the gate removal.  This is 

why the initial mixing was stronger in the experiment.  The additional disturbances 

induced by the secondary flow motions associated with the gate removal reduced the 

coherence of the KH billows.  However, in later stages of the lock-exchange flow, the 

shape of the intrusion, in both experiment and simulation, becomes similar to each other 

as observed from the close-up view of the head and wake regions in Fig. 7.7.  Observe 

the elongated shape of the intrusion in the region behind the front and the fact that KH 

billows are still clearly distinguishable in the wake region.     

Both sides of the intrusion interface are visualized in Fig. 7.8 at t=13.8t0 and 

t=37.6t0.  In the NSC simulation the growth of the 3D instabilities is slower and the flow 

and interface at t=13.8t0 remain largely two-dimensional with the exception of the front 

where 3D structures are already present.  This contrasts with the SC simulation when by 
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t=13.8t0 the KH billows were strongly stretched in the wake region (Fig. 7.4a).  It also 

suggests that the 3D structures at the front of the interface form due to a local 3D 

instability instead of having been triggered by instabilities associated with the 

deformation, stretching and break up of the KH billows.  By t=37.6t0 (Fig. 7.9d), similar 

to the SC case, a strong three-dimensionality of the flow is observed around the intrusion 

front, on the side that intrudes into the upper layer of ambient fluid.  Even at t=37.6t0, the 

main interfacial billows maintain most of their coherence and extend over the whole 

width of the computational domain.  However, the flow in the interface region is 

turbulent and a wide range of energetic 3D eddies is observed around the dissipative 

wake and some distance behind it.   

In contrast to the upper interface, the deformations of the lower interface are 

much smaller at all stages of the evolution of the IC.  Though no interfacial leading 

waves appear to have been generated because of the intrusion, for t>20t0, waves of 

relatively small wavelength are observed to travel behind the nose, at the interface 

between the IC and the lower layer.  These waves are visible in Fig. 7.9c and appear to 

extend over the whole span. At t=37.6t0, for example, the wavelength is around 0.33h 

and the amplitude is close to 0.022h.  Sutherland et al. (2004) observed that the phase 

speed of these waves is close to the front velocity.  Undulations of the bottom interface 

were observed at positions that correlate to the ones where quasi-2D vortical structures 

detach from the vorticity sheet associated with the lower interface (see Fig. 7.8a). 

The KH billows that form at the interface between the intrusion and the upper 

layer of ambient fluid a short time after the instantaneous gate removal (e.g., at t/t0=5), 

are visualized in Fig. 7.8a which shows snapshots of the spanwise-averaged vorticity 

magnitude distribution.  The head of the IC is already formed and is practically contained 

into the upper layer of ambient fluid toward the end of the acceleration phase.  As the 

intrusion evolves into the slumping phase (e.g., see frame at t=10t0 and Fig. 7.9b), large 

coherent quasi-2D billows are shed from the dissipative wake region into the upper layer 
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of ambient fluid.  As the intrusion continues to propagate these vortices initially 

containing mostly lock fluid are stretched and patches of vorticity separate from the main 

billows.  Similar to the SC case, as the quasi-2D billows lose energy, they strongly 

enhance the mixing around them (e.g., observe the vorticity structure in the region 

between x/(h/2)=2 and x/(h/2)=4 in Fig. 7.8a at t=20t0).   

Most of the vorticity entrainment into the body of the IC takes place at the bottom 

interface (e.g., observe the evolution of the eddy situated at x/(h/2)=4.2 at t/t0=10 and at 

x/(h/2)=7.3 at t/t0=20), somewhat similar to the case of a GC propagating over a no-slip 

surface where the bottom surface is the main source of vorticity and turbulence 

production for the fluid inside the head and wake regions.  Similar to the SC case, the 

large KH billows at the interface between the intrusion and the upper layer do not appear 

to penetrate into the main body of the intrusion.   The patches of vorticity left behind the 

dissipative wake disturb the rear part of the vorticity sheet between the intrusion and the 

lower layer of ambient fluid.  As a result, the vorticity sheet is broken into small scale 

turbulent eddies (e.g., x/(h/2)<3 at t=20t0).   

The streamline patterns in a system translating with the front velocity at t=10t0 

and t=20t0 (Fig. 7.8b) show that relatively large-scale recirculation motions are present 

inside the head and wake regions.  The positions of these eddies correspond to the 

positions of the interfacial vortices at the upper side of the interface.  Additionally, some 

smaller but stronger vortices are observed near the bottom side of the interface.  They 

correspond to the vortical structures ejected from the vorticity sheet between the intrusion 

and the bottom layer of ambient fluid.  In later stages of the propagation (t>30t0), these 

strong ejections become less and less frequent.  

7.3 Front And Bore Velocities 

The bore position is difficult to directly infer from the shape of the current.  

Rather, it is deduced from the spanwise-averaged concentration plot C=C(x,t) at a 
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vertical location situated slightly above or below the interface between the two 

undisturbed layers of ambient fluid (e.g., at y/h=0.47 in Fig. 7.11 for the bore in the lower 

layer in case SC).  In case SC, the bore in the upper layer propagates with practically the 

same speed.   

The straight line observed between the white region containing lower layer 

ambient fluid (C=0) and the intrusion head containing unmixed lock fluid (black region 

with C~0.5) corresponds to the front trajectory xf(t). The presence of this line is proof that 

the speed of propagation of the front is constant until the head starts interacting with the 

right end wall.  The non-dimensional front velocity over the slumping phase is 

Fr=Uf/ub=0.244 in the simulation.  This value is practically identical to the one measured 

experimentally (Fr=0.245).  The corresponding values of the Reynolds numbers defined 

with the front velocity are Ref=4,833 in the simulation and 4,851 in the experiment (see 

also Table 7.1).  In the experiment a relatively thin mixing layer is always present 

between the upper and lower layers of ambient fluid due to the diffusion and mixing 

during the stratification process.  The excellent agreement between simulation, in which 

the mixing layer has zero thickness, and experiment demonstrates that the presence of the 

thin (~1cm) layer of mixed ambient fluid in the experiment is not the main cause why the 

front velocity is slightly lower than the theoretical value for inviscid intrusions (Fr=0.25).  

A detailed analysis of the dissipative losses along the IC which may explain some of the 

reasons for the differences between theory and simulation is discussed in section 7.5.  

The front velocity measured by Faust & Plate (1984) ranged from 0.234 to 0.241 for Ref 

between 1,500 and 13,700; the interface thickness was about 0.1h.  Lowe et al. (2002) 

measured front velocities close to 0.247 for Ref=5,000-7,000. 

In Fig. 7.11, the first thin, gray region behind the uniform black region 

corresponds to the bore.  This thin region on top of which a solid red line was 

superimposed makes a constant slope with the time axis until t~24t0.  Its slope is larger 

than the slope of the line corresponding to the front trajectory.  This indicates that the 
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bore velocity, Ubore, is larger than the front velocity.  The relative velocity difference 

(Ubore-Uf)/Uf inferred from Fig. 7.11 is equal to 0.29, whereas, the value obtained from 

experiment (Sutherland et al., 2004) is close to 0.23.  Rottman and Simpson (1983) 

measured values between 0.2 and 0.3 for GCs propagating over no-slip surfaces.   

Around t~24t0 there is a clear change in the bore trajectory that becomes almost 

parallel to the front trajectory until the end of the simulation.  This signifies that though 

the bore catches the intrusion head, the bore does not pass the head, and the length of the 

bulk-shaped region at the front part of the intrusion remains relatively constant (see Fig. 

7.2).  The fact that the front continues to propagate with the same velocity past the end of 

the slumping phase in case SC is somewhat surprising.  However, this phenomenon was 

also observed in the corresponding experiment of Sutherland et al. (2004).  It is 

postulated that for the flow conditions of case SC the transition toward the self-similar 

phase is very slow because the density of the intrusion fluid just behind the front remains 

practically constant and approximately equal to the lock fluid density.  This implies that 

the driving buoyancy force remains practically the same.  However, as already pointed 

out, the dimensions of the bulb-shaped intrusion region start decaying in time after the 

end of the slumping phase.  So, once mixing and dissipation will start occurring behind 

the front, one expects the front velocity will start decaying.  In this regard, the behavior 

of a symmetrical IC is different from that of a bottom-propagating GC, when, once the 

bore overtakes the front, the density of the current behind the front becomes lower than 

the initial lock fluid density and the front velocity starts decaying immediately.    

In the experiment, the end of the slumping phase occurs earlier, around t=18-20t0.  

The discrepancy could be due to the secondary motions introduced in the experiment by 

the removal of the lock gate and also to the fact that the gray scale variations associated 

with bore trajectory in the C(x,t) plots in both experiment and simulations are not very 

sharp.  At t~24t0, the intrusion has reached xf=6.2h, corresponding to a non-dimensional 

length of (xf-x0)/x0~5.9 (see also Fig. 7.12).  Several other parallel lines, at an angle close 
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to that of the bore trajectory, can be observed.  They correspond to the tail oscillations 

behind the main intrusion region.  Their propagation speed is close to the bore velocity 

during the slumping phase and, thus, is larger than the front velocity, consistent with the 

observations of Mehta et al. (2002) and Sutherland et al. (2004).    

Despite the asymmetry of the intrusion in the NSC simulation,  its propagation 

speed after the end of the acceleration phase (t~8t0) is practically constant, at least until 

t=40t0.  The non-dimensional front velocity is 0.160 (Ref=3,169).  The Froude number 

value obtained from experiment is 0.161, and the one given by theory (Holyer & 

Huppert, 1980, Sutherland et al., 2004), in which the head is considered to be energy 

conserving, is 0.165 (∆=3/4).  The front speed is lower compared to the one observed in 

the doubly-symmetric case.  This is also evident from Fig. 7.12 where the temporal 

evolution of the non-dimensional front position is plotted in log-log scale.  The slope of 

one (solid lines in Fig. 7.12) corresponds to a constant front velocity.  The lower value of 

the front velocity in case NSC is due to the lower density of the fluid in the head region 

(C=0.125) as compared to that of case SC (C=0.5).  The fluid density in the head is equal 

to that of the lock fluid which is equal to the mean density of the ambient fluid.  In the 

NSC case, this density is much closer to the upper layer density due to the high ratio 

between the depths of the upper and lower layers of ambient fluid.  As most of the IC 

propagates into the upper layer, the effective buoyancy force will be smaller compared to 

case SC.  Consequently, the return flow in the upper layer will travel a longer time until it 

reaches the end wall.  As also observed in the experiment, the bore in the upper layer 

does not catch the head region before the intrusion approaches the right end wall. 

Details of the evolution of the IC in cases SC and NSC in the initial stages of the 

lock-exchange flow can be inferred from Fig. 7.13 where the speeds and trajectories of 

the intrusion front and return flow in the upper layer of ambient flow are plotted.  The 

velocities of the return flow and intrusion front are practically identical in case SC until 

t=3.5t0.  Then, the return flow decelerates rapidly as it starts interacting with the end 
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wall.  This is not observed in case NSC where the return flow in the upper layer appears 

to accelerate faster than the intrusion front.  The return flow reflects from the end wall at 

4.2t0 in case SC and at 6.8t0 in case NSC.  The initial length of the lock fluid, x0, is not 

large enough for a region of constant return flow velocity to form for the flow conditions 

in case SC. Such a region, however, appears to be present between t/t0=1.5 and t/t0=4.5 in 

case NSC for the return flow in the upper layer due to the smaller value of the buoyancy 

force in case NSC compared to case SC.  The front velocity of the return flow is about 

10% lower than the intrusion front velocity over this time interval.  The variation of the 

front velocity in the initial stages of the motion is not exactly monotonic.  It first reaches 

a maximum value of 0.29ub in case SC and of 0.2ub in case NSC before slowly adjusting 

toward the slumping phase values, at the end of the acceleration phase.  The maximum 

value is reached at t=1.0t0 and 1.5t0 in cases SC and NSC, respectively, after the release 

of the lock gate. 

7.4 Energy Budget 

The temporal variation of Ep is shown in Fig. 7.14a while Ek and Ed are shown in 

Fig. 7.14b.  The individual terms in equation (5.8) are shown in Fig 7.15 for both 

simulations.  All the variables in Fig. 7.14 are nondimensionalized by the value of Ep0 in 

case SC, to facilitate the comparison of the SC and NSC simulations for which the 

Grashof number is the same.  The value of Ep0 in case NSC is only about 0.095 of that in 

case SC.   In both simulations, the variation of Ep can be divided into two regions.  The 

first region, in which Ep decays fast, roughly corresponds to the duration of the 

acceleration phase (t~5t0 for SC and t~8.5t0 for NSC) which is characterized by the 

conversion of potential energy into kinetic energy (see also variation of γ and dEk/dt in 

Fig. 7.15).  The process is practically inviscid as not much dissipation takes place during 

the acceleration phase.  At the end of the acceleration phase, Ek attains its maximum (case 

SC) or is very close to it (case NSC).   In the second region, once the IC enters the 
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slumping phase, the decay of Ep becomes much slower.  This is because the intrusion 

mainly travels in the horizontal direction.   

In the SC simulation the increase in the total dissipation is due mostly to the 

decay in the potential energy (see Fig. 7.15) from the end of the acceleration phase until 

t~15t0.  Over this interval ε attains its maximum value.  The large values of ε are mainly 

due to the interfacial billows that rapidly break into 3D smaller eddies.  Over this time 

interval, the SGS dissipation rate is close to 22% of the total dissipation.  For t>15t0, the 

increase in ε comes at the expense of both Ep and Ek which are observed (see Fig. 7.14) to 

decay by similar amounts during the time the intrusion front propagates with practically 

constant speed.  Consistent with that, the values of γ and dEk/dt are relatively close.  The 

ratio between εt and ε decays to about 15% for t~30t0 showing that most of the 

dynamically important eddies were resolved in the SC simulation. The main difference 

compared to the SC simulation in the variation of ε is the fact that, though a local 

maximum is observed at t~9t0, the total dissipation rate continues to increase from t=20t0 

until, at least, t=35t0 in the NSC simulation.  Eventually, the total dissipation rate is 

expected to peak and start decaying because the lock-release flow contains a finite 

volume of lock fluid.  The ratio εt/ε in case NSC is less then 5% until t=25t0. The 

simulation is very close to DNS regime over this time interval.  After that, as more small 

turbulent eddies are created around the main 2D billows, the ratio εt/ε increases to 12% at 

t=35t0. 

7.5 Spatial And Temporal Distributions Of The Dissipation 

Rate And Streamwise Velocity 

The changes in the spatial distribution of the spanwise-averaged local dissipation 

rate, εL, are analyzed in Fig. 7.16 at several stages of the evolution of the IC (t/t0=5, 10, 

20 and 30) in the SC simulation.  Knowledge of the distribution of εL, which is difficult 

to obtain experimentally, is useful because it helps to better understand the flow physics 
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and for modeling purposes in theoretical models that incorporate the effect of dissipation.  

High-resolution simulations can provide this kind of information not only globally but 

also as an integral over a certain direction or region (e.g., streamwise variation of the 

dissipation integrated over vertical planes, integral of the dissipation over the dissipative 

wake region) to make the analysis easier.   

Most of the dissipation takes place in the interfacial billow vortices that form at 

the lower and upper interfaces between the intrusion and the two layers of ambient fluid 

in the dissipative wake region.  This is true at practically all stages of the evolution of the 

IC as observed in Fig. 7.16. The other region where εL is very high is inside the thin shear 

layers that correspond to the front.  The shape of these shear layers is close to the one 

predicted by Benjamin (1968) for an energy-conserving head (dashed white line in 

Figures 7.16b and 7.16c).  As expected, the shape predicted by Benjamin’s (1968) theory 

gives poorer agreement in the dissipative wake region due to the presence of KH billows 

at the interface, high dissipation, and the fact that the flow behind the intrusion front is 

not stagnant (e.g., see discussion of Figures 7.3b and 7.19).  The streamwise distance 

between the nose and the position of the first billows is approximately 0.7(h/2) in all the 

frames of Fig. 7.16.  This distance defines the approximate length of the head region.    

Another interesting observation is that εL is very low not only inside the head 

region, behind the shear layers at the front, but also in the interior of the dissipative wake 

region, away from the interface.  The dissipation rate in the interior of the head region 

remains very low even after the end of the slumping phase (t~22t0).  Another region 

where εL is high is behind the wake region, at the level of the upper and lower interfaces.  

In these two layers, the billows shed from the main body of the IC are left behind, 

stretched and dissipate while mixing the lock fluid from the dissipative wake region with 

the ambient fluid.  The tail region around the centerline y/h=0.5 is practically non-

dissipative.  This explains why, in the experiments and simulation, the tail defined by the 

lock fluid left behind the main intrusion forms a relatively thin, stably-stratified layer.   
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Figures 7.17 and 7.18 show the horizontal and vertical distributions of the local 

dissipation rate integrated over y=constant ( 23ε  ) and x=constant ( 13ε ) sections at t/t0=5, 

10, 20 and 30. Their SGS components are denoted 23
tε and 13

tε , respectively.  They are 

shown with dashed lines in Figures 7.17 and 7.18.  An important aspect of the streamwise 

variation of 23ε  in the SC simulation is the fact that the values at locations intersecting 

the thin shear layer that defines the interface between the head region (0<x/(h/2)<0.7, 

where x=0 corresponds to the instantaneous nose location and x is measured backwards) 

and the ambient fluid are comparable to the values observed at locations inside the 

dissipative wake.  This is the case in spite of the interior of the head region being 

practically dissipation free, as shown in Fig. 7.16.  After the end of the acceleration phase 

the largest values of 23ε  generally are observed at the back of the dissipative wake 

region.  However, 23ε   remains relatively high some distance behind the dissipative wake 

because of the presence of the billows which have already detached from the interface 

between the wake and the ambient fluid (around y/h~0.25 and 0.75).  While these 

vortices are decelerating, they are being stretched and lose their energy via the energy 

cascade down to dissipative scales.  As a consequence, two layers of relatively high 

vorticity are observed in Fig. 7.3 around y/h~0.25 and 0.75.  The length of this dissipative 

region is close to 8(h/2) at t=20t0 and 4.5(h/2) at t=30t0.  Notice that the contribution of 

the head region as a percentage of the total dissipation in the head and dissipative wake 

regions increases in time.  At t=30t0, the contribution of the head is close to 50%.  

However, relative to the dissipation occurring over the whole length of the intrusion the 

percentage is close to 20% at the same time instant.         

In the NSC simulation, the distributions of 23ε  are similar to the ones observed in 

the SC simulation over the slumping phase.  The main difference is that most of the 

dissipation in case NSC occurs at the interface between the intrusion and the upper layer 

of ambient fluid, and behind the dissipative wake region in the upper layer (see also the 

vertical distribution of  13ε  in Fig. 7.18b).  At t=10t0, 23ε  is almost uniformly distributed 
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over the whole length of the intrusion (the larger values at the left end wall are due to the 

interaction between the lock fluid and the attached boundary layers).  The distribution, 

however, becomes more non-uniform at later times.  The largest values at t=20t0 are 

observed in the head region and over the downstream part of the wake region.  Even 

behind the bore the values of 23ε   can be relatively high if the billows left behind (see 

vorticity contours in Fig. 7.8) are still maintaining their coherence (e.g., for 4<x/(h/2)<6 

at t=20t0 and for 6<x/(h/2)<8 at t=30t0).  By t=30t0, the largest values of  23ε  are 

observed at the end of the wake region where the last billow interacts with the shear layer 

separating the intrusion from the lower layer of ambient fluid.   

The vertical distributions of 13ε   in the SC simulation show that most of the 

dissipation takes place in two horizontal layers centered at y=0.65h and y=0.35h.  These 

locations correspond to the two layers of high vorticity magnitude in Fig. 7.3a.  The 

overall decrease of the total dissipation rate starting at t~9t0 (Fig. 7.15) is consistent with 

the variation of the 13ε  profiles in Fig. 7.18a.  The degree of asymmetry, observed in the 

initial stages of the simulation in the distribution of 13ε , in the two high dissipative layers 

reduces as the flow continues to develop.  The asymmetry is due to the presence of a no-

slip boundary at the bottom surface and of a slip boundary at the top surface.  In fact, the 

relative contribution of the wall layer present near the bottom boundary (y/h<0.1) to the 

total dissipation in the domain decreases continuously, starting at the end of the 

acceleration phase.  The dissipation near the bottom boundary is expected to be largely 

caused by the streamwise velocity gradients in the wall normal direction.  To investigate 

this, the 13
12ε  component that contains these gradients in the expression for the total 

dissipation was plotted in Fig. 7.18.  Indeed, one can see that 13
12ε  ~ 13ε  near the bed, in 

the frames in Fig. 7.18a. The component 13
12ε becomes much smaller than 13ε away from 

the bed, as the flow three-dimensionality increases. 

The profiles of  13ε  in the NSC simulation show that as the intrusion flow evolves 

in time, the layer centered around y=0.65h, in which the large vortical billows are 
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forming at the interface between the intrusion and the upper layer of ambient fluid, 

increases its contribution to the total dissipation within the flow domain.  The relative 

contribution of the layer centered around y/h~0.08 is larger (~32%) at t=10t0 compared to 

other time instances because of the presence of relatively strong patches of vorticity 

ejected from the interface between the wake region and the lower layer of ambient fluid 

(Fig. 7.8a).  However, the contribution of this middle layer of high values of 13ε  

decreases monotonically in time, such that by t=30t0 its contribution to the total 

dissipation is only 16%.  In fact, most of the overall increase of the total dissipation 

within the flow domain between t=20t0 and t=30t0 is due to the increase of the 

dissipation rate in the top layer.  This layer accounts for 61% of ε at t=20t0 and for 79% 

at t=30t0.  Over the same time interval, the dissipation in the middle layer remains 

practically constant.  At all time instances, the contribution of the bottom layer (y/h<0.05) 

to the total dissipation rate ε is less than half that of the middle layer.  The fact that the 

values of 13
12ε   are very close to 13ε in the bottom and middle layers of relatively high 

dissipation confirms that the flow remains relatively two-dimensional in those layers, at 

least until t=30t0.  In the case of the upper layer, for t>10t0 a clear decrease of the 

contribution of 13
12ε  is observed.  This means that the flow becomes strongly three-

dimensional in the later stages of the slumping phase. 

The instantaneous spanwise-averaged streamwise velocity contours from the SC 

simulation are shown in Fig. 7.19 along with the streamline patterns and the region 

containing intrusion fluid which has a density that is very close to the lock fluid density 

(C~0.5) at t/t0=10, 20 and 30.  The thick line in the pictures showing the streamline 

patterns and the streamline velocity contours corresponds to the contour line where the 

streamwise velocity is equal to the front velocity.  Fig. 7.19d shows the streamise 

velocity profiles at the center plane (y/h=0.5).  The origin of the streamwise axis is 

situated at the location of the intrusion nose in Fig. 7.19. 
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By t=10t0, practically all the lock fluid was convected out of its original location 

into the horizontal intrusion wedge.  At this early stage of the slumping phase, the 

streamwise velocity in the center of the intrusion is larger than the front velocity.  This 

region of high streamwise momentum was created during the acceleration phase when a 

considerable amount of the initial potential energy was convected into kinetic energy.  

This momentum will gradually be lost as the intrusion advances, due to the mixing that 

takes place at the interface between the dissipative wake region and the ambient fluid, 

and to the fact that the intrusion fluid at the back of the dissipative wake decelerates 

slowly.  As the mean streamwise velocity decays below the front velocity, some of the 

fluid will be left behind to form the tail that contains mostly lock fluid.  This 

phenomenon is visible in simulations and experiment (e.g., see Fig. 7.2).   One should 

point out that in the case of a lock exchange flow with an infinite-volume of lock fluid, 

the scenario is different, as the tail serves to feed lock fluid toward the wake and head 

regions.  Thus, the streamwise velocity in the tail is expected to be higher than the front 

velocity for such a case.     

Comparison of the region containing fluid moving faster than the front speed 

(u>Uf) in Figures 7.19a-c shows that there is an overall loss in streamwise momentum 

over the main body of the intrusion.  If at t=10t0 the maximum streamwise velocities in 

the wake were as high as 1.45Uf, around the end of the slumping phase at t=20t0, the 

maximum velocity is only 1.25Uf and the size of the region where u>Uf has reduced by 

half.  The presence of unmixed lock fluid moving relatively uniformly behind the nose 

during the slumping phase is consistent with the observations of Hacker et al. (1996) for 

bottom propagating GCs and Lowe et al. (2004) for doubly-symmetric intrusion 

experiments.  By t=30t0, the maximum velocity is only 1.05Uf. The region where u>Uf 

continues to shrink.  The fact that the head region behind the nose continues to propagate 

at practically the same speed some time after the end of the slumping phase (e.g., at 

t=30t0) is due to the fact that the non-dissipative region behind the nose still contains 
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unmixed lock fluid.  However, it is expected that as the thickness of the head gets smaller 

and the wake moves closer to the nose, dissipative effects will become important behind 

the nose and the speed of the head will start decaying, similar to the observed evolution 

of a GC propagating over a no slip wall during the self-similar phase. 

As observed from Fig. 7.19d, the velocity in the head region (up to 0.7(h/2) 

behind the nose) remains relatively uniform (u~Uf) after the end of the acceleration phase 

(t>7t0).  Behind the dissipative wake, the streamwise velocity was observed to decay 

relatively monotonically especially for t>15t0.  The fact that the streamwise velocity near 

the middle plane is higher than the front velocity is due to the presence of the interfacial 

vortices at the edge of the wake region.  These billows advect some of the unmixed 

intrusion fluid toward the interface region where the intrusion fluid starts mixing with the 

ambient fluid.  As these billows stretch and break down, they form the two layers 

observed in Fig. 7.3a. The mixed fluid, however, is not re-entrained into the intrusion.  

As seen in Figures 7.3 and 7.19, these vortices generally form in pairs at the two sides of 

the intrusion and their sense of rotation is such that they increase the streamwise velocity 

of the flow moving in between them toward the nose of the intrusion. The increase in 

velocity is particularly high at streamwise locations that correspond to the locations of 

these pairs of vortices and is proportional to their strength. Fig. 7.20 shows similar 

information for the NSC case.    

7.6. Summary 

The temporal evolution of lock-exchange intrusion currents developing into a 

two-layer ambient fluid was analyzed based on high resolution 3D simulations and 

compared to the experiments of Sutherland et al. (2004) for two test cases.  The first one 

corresponded to the doubly-symmetric case (SC) in which the depths of the two layers of 

ambient fluid were equal.   In the second non-symmetric case (NSC) the upper layer was 

seven times deeper than the bottom layer.  In both simulations, the density of the lock 
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fluid was equal to the mean density of the ambient fluid and the Reynolds number 

defined with the front velocity and channel half depth was larger than 2,000 which 

ensured that viscous effects did not play an important role.  The length of the 

computational domain was not enough to study the evolution of the IC well past the end 

of the slumping phase, when significant mixing is expected to occur behind the nose and 

the front velocity starts to decay.  The agreement with the experimental data of 

Sutherland et al. (2004) was found to be satisfactory both qualitatively (structure of the 

IC) and quantitatively (e.g., front velocity).  Some differences in the flow structure were 

observed in the initial stages of the flow development in case NSC.  The disturbances 

introduced by the removal of the lock gate in the experiment, which introduced relatively 

strong secondary motions around the gate position, was the main reason for these 

differences.   

In case SC, in which the Reynolds number was higher than in case NSC, the 

billows that formed at the interface between the dissipative wake region and the two 

layers of ambient fluid were found to break rapidly after their formation.  This created 

two layers, above and billow the tail, where the vorticity magnitude was high and mixing 

was very strong.  The mixing in the tail was weak and the vorticity magnitude was almost 

zero.  This allowed the tail in the 3D simulation to maintain the linear shape observed in 

the experiment.  Some small amplitude trailing waves were observed to form in the 

region behind the dissipative wake.  

In case NSC, consistent with experimental observations, most of the intrusion 

advanced into the upper layer of ambient fluid.  Thus, most of the mixing took place at 

the interface between the intrusion and the upper layer. Meanwhile, at the interface with 

the lower layer waves were observed to form starting behind the nose of the current.  Due 

to the lower Reynolds number, the billows in the upper layer maintained their 2D 

character for longer times compared to the SC simulation. 
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Visualizations of the interface surface in the front region showed that, eventually, 

the 3D instabilities were strong enough to form large-scale deformations, similar to the 

lobe-and-cleft structures observed for GCs propagating over a no-slip boundary.  Our 

simulation results appear to confirm the conclusions in the work of McElwaine & 

Patterson (2004), who provide evidence that the instability mechanism responsible for the 

development of lobes and clefts is not necessarily related to the presence of a no-slip 

surface, if the Reynolds numbers are high enough.  The length scales of the structures in 

the front region were found to be smaller than the lobe dimensions observed in GCs 

propagating over a no-slip boundary at similar Reynolds numbers. 

The intrusion was found to propagate at a constant velocity after the end of the 

acceleration phase and no significant leading interfacial waves were observed.  In both 

simulations, the front speed peaked during the acceleration phase before reaching an 

asymptotically constant value.  The front speed during the slumping phase was sensibly 

higher in the doubly-symmetric case.  The agreement with experiment was excellent.  

The values were slightly lower than the theoretical predictions of Holyer and Huppert 

(1980) even though the thickness of the interface between the two layers of ambient fluid 

was equal to zero.   In case SC, the bore was observed to catch the back of the head 

before the intrusion approached the end wall.  In both experiment and simulation, 

however, the front continued to propagate at the same speed for some time, in contrast to 

bottom propagating GCs (e.g., see experiments of Rottman and Simpson and numerical 

simulations of Ooi et al., 2006b).  For bottom-propagating currents, once the bore 

overtakes the front, the density of the fluid behind the nose becomes lower than the lock 

fluid density, the buoyancy force decreases and the front velocity starts decaying 

immediately.  In case SC, the density of the intrusion fluid in the head region remained 

equal to that of the lock fluid, negligible dissipation and mixing occurred in the interior of 

the head region and the head front maintained its shape.  However, the thickness of the 
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head and wake regions were found to decay indicating that, a certain point, the flow 

behind the nose will become affected by mixing and eventually slow down.   

Two-dimensional simulations were found to correctly predict the evolution and 

structure of the intrusion during the acceleration phase and the initial stages of the 

slumping phase when the flow in the wake region and behind the head remained largely 

two-dimensional.  Though the front velocity was correctly predicted over the whole 

simulated period, once 3D effects became important, the structure of the IC predicted by 

the 2D simulations was found to be different from that observed in 3D simulations and 

experiment.  The main difference was that the KH billows left behind the wake region 

maintained their coherence for much longer times in the 2D simulation because of the 

absence of 3D instabilities.  The structure of the head region was significantly different 

once the bore cached the head region.      

In the SC simulation, the instantaneous distributions of the local dissipation rate 

showed that the interior of the head and the center of the dissipative wake region 

containing lock fluid remained practically non-dissipative even after the end of the 

slumping phase.  However, the streamwise distribution of the local dissipation rate 

integrated over vertical planes showed that the dissipation levels at locations cutting 

through the very thin shear layers at the intrusion front were close to the ones observed in 

sections cutting through the dissipative wake.  Most of the dissipation taking place behind 

the dissipative wake originated in the high vorticity layers that were formed by the 

breaking of the KH billows.  In the NSC simulation, as the intrusion continued to 

propagate in the slumping phase, the amount of dissipation taking place in the high-

vorticity layer formed inside the upper layer of ambient fluid was found to increase 

significantly in time, as 3D effects became more and more important.  In contrast to that, 

the contributions of the bottom layer and of the layer corresponding to the interface 

between the intrusion and the lower layer of ambient fluid were found to slightly decay 

with time.  
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In case SC, the streamwise velocity distributions inside the head and wake regions 

were found to be qualitatively similar to the ones observed by Lowe et al. (2004).  In 

particular, it is confirmed that the head region contains unmixed lock fluid and the flow is 

close to uniform (u~Uf).  In the wake region, the flow becomes non-uniform because of 

the large interfacial billows that locally induced an increase in the streamwise velocity of 

the intrusion flow.  The size of the region containing velocities higher than the front 

velocity was observed to decay monotonically with time.  Even after the end of the 

slumping phase, some unmixed lock fluid was present behind the nose and a region with 

u>Uf was still present.  However, the size of this region diminished considerably as the 

thickness of the head started to decay.  Starting at the end of the acceleration phase, the 

forward propagating bore reduced the size of the wake region.  As this happened, some of 

the originally unmixed lock fluid situated in the center of the channel (y/h~0.5), toward 

the back of the dissipative wake region, started to decelerate.  This left behind a relatively 

thin layer of unmixed lock fluid (downstream part of the tail), also observed in the 

experiment.  At a given moment, the streamwise velocity inside the tail is decaying with 

the distance from the end of the wake region.  Very little dissipation is taking place inside 

the tail region.          

 



www.manaraa.com

 

 

192

Table 7.1. Details of the intrusion front simulations.  

Case L/h Gr =  
(ubh/ν)2 

Fr = 
 Uf/ub 

Ref= 
Uf(h/2)/ν  

∆=(h0-h1)/h 
01 ρρ

ρρε −
−= L

R  

SC 9.855 1.57×109 0.243 
(0.245) 

4813  
(4851) 

0 0 

NSC 9.855 1.57×109 0.160 
(0.161) 

3169 
(3267) 

¾ 0 

Note: Values in () are from Sutherland et al. (2004)
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a)   

b)  

c)  

Figure 7.1. Sketch of a lock-exchange intrusion flow into a two-layer fluid in a channel 
with lateral walls. a) initial conditions; b) intrusion current immediately after 
the gate was removed; b) intrusion current during the slumping phase after the 
return flows have reflected and forward propagating bores have formed. 
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a)  b) 
 

        

        

        

c)  d)  

Figure 7.2. Concentration contours showing temporal evolution of intrusion current for 
case SC at t/t0=2.0, 13.8, 25.8 and 37.6. a) spanwise-averaged contours from 
3D simulation; b) experimental results of Sutherland et al. (2004); c) 
z=constant plane from 3D simulation; d) 2D simulation. 
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a)  
 

b)   

Figure 7.3. Visualization of vortical structure of intrusion current for case SC. a) 
spanwise averaged vorticity magnitude contours at t/t0=5, 10, 20 and 30; b) 
streamline patterns showing vortical structure behind the intrusion front in a 
system translating with the front velocity at t/t0=5 and 10. 
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a) b)  

c)  

Figure 7.4. Visualization of intrusion current interface using a concentration isosurface 
(C = 0.5) for case SC a) t/t0=13.8; b) t/t0=37.6; c) close-up view showing 
development of large-scale structures at the front. 
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a) b)  

Figure 7.5. Visualization of the development of large-scale structures at the intrusion 
front for case SC.  The front shapes of gravity currents propagating over no-
slip surfaces are shown for comparison. a) t/t0=20; b) t/t0=30. 
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a)  
 

b)  
 

c)  
 

d)   

Figure 7.6. Concentration contours showing temporal evolution of intrusion current for 
case NSC. a) t/t0=5.0; t/t0=10; c) t/t0=20; t/t0=30. Top picture in each frame 
shows experimental results of Sutherland et al. (2004).  Bottom picture shows 
spanwise-averaged concentration contours from 3D simulation. 
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Figure 7.7. Visualization of the head and dissipative wake regions in the later stages of 
the slumping phase for case NSC. a) experimental results of Sutherland et al. 
(2004; b) spanwise-averaged concentration contours from 3D simulation. 
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a)  
 

b)  

Figure 7.8. Visualization of vortical structure of intrusion current for case NSC. a) 
spanwise averaged vorticity magnitude contours at t/t0=5, 10 and 20; b) 
streamline patterns showing vortical structure behind the intrusion front in a 
system translating with the front velocity at t/t0=10 and 20. 
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a) b)  

c) d)  

Figure 7.9. Visualization of intrusion current interface using a concentration isosurface 
(C = 0.12) for case NSC a) t/t0=13.8 lower interface; b) t/t0=13.8 upper 
interface; c) t/t0=37.6 lower interface; d) t/t0=37.6 upper interface. 
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a) b)  

Figure 7.10. Visualization of the instantaneous structure of gravity currents using vertical 
vorticity contours. a) lower interface of intrusion current in case SC; b) view 
from below of a finite-volume lock exchange gravity current propagating over 
a no-slip surface. 
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Figure 7.11. Evolution of density with time along the x axis for case SC. Distance from 
the bottom is y/h = 0.47.  
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Figure 7.12. Evolution of the non-dimensional front position with time in log-log scale. 
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a)  
 

b)  

Figure 7.13. Evolution of the front and bore positions and velocities for cases SC and 
NSC during the initial phases of motion. 
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Figure 7.14. Time history of the components of the global energy budget in the SC (solid 
line) and NSC (dashed line) simulations. a) potential energy, Ep, b) kinetic 
energy, Ek, and time integral of the total dissipation rate, Ed. 
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Figure 7.15. Temporal evolution of the terms in the transport equation for the total kinetic 
energy in the SC (solid line) and NSC (dashed line) simulations. 
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Figure 7.16. Distribution of the spanwise-averaged local dissipation rate εL in the SC 
simulation at t/t0=5, 10, 20, 30. 
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Figure 7.17. Streamwise distribution of the total dissipation term )( 1
23 xε (solid line) and 

SGS term )( 1
23 xtε  (dashed line) at t/t0=5, 10, 20 and 30. a) SC simulation; b) 

NSC simulation. 
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Figure 7.18. Vertical distribution of the total dissipation term )( 2
13 xε (solid line), SGS 

term )( 2
13 xtε (dashed line) and dissipation term containing the vertical 

gradient of the streamwise velocity )( 2
13
12 xε (dashed-dot line) at t/t0=5, 10, 20 

and 30. a) SC simulation; b) NSC simulation. 
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a) b)  
 

    

    

c) d) 

Figure 7.19. Unmixed lock fluid distribution, streamline patterns and streamwise velocity 
contours at different stages of the evolution of the intrusion current in case 
SC. a) t/t0=10; b) t/t0=20; c) t/t0=30; d) streamwise velocity variation along the 
mid-plane y/h=0.5. 
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Figure 7.20. Unmixed lock fluid distribution, streamline patterns and streamwise velocity 
contours at different stages of the evolution of the intrusion current in case 
NSC. a) t/t0=20; b) t/t0=30; c) streamwise velocity variation along a curved 
line starting at the nose of the intrusion and following the centerline of the 
intrusion current. 
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CHAPTER 8  

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

The numerical simulations performed as part of the present study demonstrate that 

a 3D LES non-dissipative model is able to correctly capture most of the important aspects 

of lock-exchange gravity-driven flows at high Grashof numbers (Gr>>108) where DNS 

simulations are computationally too expensive.  The validation study included not only 

qualitative comparisons with experimental visualizations of the evolution of a gravity 

current present in the three different types of lock-exchange configurations considered in 

the present work, but also a detailed quantitative study of these gravity currents.  The 

main quantities that were compared with experimental data and theory were the front and 

bore velocities during the slumping phase, the position of the end of the slumping phase, 

the power coefficients in the expressions describing the evolution of the front velocity 

over the inviscid and viscous phases and the dependence with the local Reynolds number 

of the mean size of the lobes at the front of the current.  For all these quantities the 

agreement with experiment and theory was found to be good. 

It was demonstrated that 2D simulations at relatively low Grashof numbers 

(Gr~106) correctly predict the main aspects of the flow including the front speed and bed 

shear stress distribution.  This is despite the fact that 2D simulations cannot account for 

vortex stretching phenomena or for the formation of lobes and clefts at the front of the 

gravity current.  At high Grashof numbers (Gr>108), 2D LES was able to correctly 

predict the front speed of the intrusion and the general flow structure during most of the 

slumping phase for both infinite and finite volume lock-exchange flows.  However, 2D 

simulations were unable to correctly capture the structure of the gravity current in the 

later stages of its evolution, specifically the break up of the large-scale Kelvin-Helmholtz 

billows into small-scale structures. This led the 2D LES simulations to underpredict the 
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front speed velocity during the self-similar phase. It also led to incorrect predictions of 

the bed shear stress distribution. 

The flow structure of the head and tail regions was investigated for all the three 

types of lock exchange configurations considered in the present study.  The main result is 

the fact that the formation of the lobe and cleft structure at the front of a gravity current is 

not dependent on the presence of a no-slip boundary if the Grashof number is high 

enough.  Still, it was shown that the growth rates and characteristic sizes of the lobes are 

larger if the current propagates over a no slip surface.  It was also shown that for Gr>108 

high and low speed streaks are present in the near bed region some distance behind the 

front.  As the local Reynolds number decays below levels at which turbulence can be 

maintained, the streaky structure was found to disappear.  The streamwise velocity 

streaks were found to affect the distribution of the bed shear stress in the region behind 

the front and to promote mixing in the near-bed region.  The effect of the Grashof 

number on the stretching and break up of the KH billows was studied.  It was found that 

during the inviscid phase the lobes interact with the KH billows in the formation region 

and induce significant deformations of their cores in the spanwise direction.  This makes 

the subsequent evolution of the KH billows to be highly three-dimensional.  The flow 

structure in the tail region was correctly predicted by the 3D simulations over both the 

slumping and inviscid phases.  This was in contrast to the results obtained from 2D 

simulations.    

The present study provides the first qualitative and quantitative description of the 

bed shear stress distribution during the slumping and inviscid phases of the evolution of a 

turbulent bottom propagating gravity current (Gr>108).  Qualitatively, it was shown that 

the large KH billows in the interface region and the presence of the streaks of high 

streamwise velocity behind the front are the main phenomena that affect the 

instantaneous distribution of the bed shear stress.  It was also demonstrated that the effect 

of the Grashof number is important, including over a range of Grashof numbers where 
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the flow inside the head region is strongly turbulent (108<Gr<1012).  It was shown that for 

two GCs containing the same initial volume of lock fluid, the one at the higher Grashof 

number will be more effective in entraining sediment in the case in which the current 

propagates over a loose bed.  This means that estimations of the amount of sediment 

entrained by gravity currents obtained from experiments/ simulations carried at lower 

Grashof numbers are lower than the real ones.  For applications related to sediment 

entrainment induced by salinity currents forming at real lock facilities this is of great 

importance because the Grashof numbers of these gravity currents are much higher than 

the ones typically studied in laboratory experiments.  The present model can be used 

toward estimating the amount entrained and the deposition patterns for lock exchange 

flows at Grashof numbers that are much closer to the ones encountered in these 

applications.  In this case one expects scale effects to be much less important.  I 

Investigation of the global energy balance showed that for infinite volume bottom 

gravity currents, an equilibrium state is eventually attained in which the dissipation rate 

and the rates of change of the kinetic and potential energy are relatively constant.  In the 

case of finite-volume lock exchange currents it was shown that, starting toward the end of 

the slumping phase, the variation of these quantities is logarithmic.  The spatial 

distributions of the dissipation rate confirmed that most of the dissipation takes place 

inside the dissipative wake region due to the action of the interfacial vortices.  However, 

it was shown that in the region situated just behind the front of the current, the dissipation 

inside the thin shear layers can be significant.  For bottom propagating currents, the near 

bed region can also substantially contribute to the dissipation rate starting immediately 

behind the front.  For bottom propagating currents it was found that the streamwise 

distribution of the dissipation rate changes significantly between the slumping and the 

self-similar phase.  This information can be used toward developing simpler integral 

models that need to estimate the dissipation over the head and tail regions. 
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The following subsections summarize the major results of the 3D LES 

simulations of compositional Boussinesq gravity currents for each of the three generic 

lock-exchange configurations considered in the present work. 

8.1.1 3D Infinite Volume Lock-Exchange Gravity Current 

Simulations 

Good agreement was observed between the present 3D LES simulations and the 

results of previous experimental investigations and theory for the bulk flow quantities.  

The simulations successfully captured the development of the lobe-and-cleft structures at 

the front of the current and the shedding of interfacial vortices behind the head region.  

The presence of large-scale interfacial KH billows was found to strongly influence the 

instantaneous bed shear stress distribution.  Consequently, the distribution of the friction 

velocity in the HGR simulation (Gr=2×109) was found to be more uniform behind the 

front region compared to the LGR simulation (Gr=1.25×106).  In the HGR simulation it 

was observed that the rapid loss in the coherence of the KH billows was due to their 

interaction with small scale three-dimensional turbulent eddies, suggesting that part of the 

flow inside the gravity current was strongly turbulent.  Consistent with this, vorticity 

contours near the top and bottom walls showed the presence of streaks of positive and 

negative vertical vorticity in the region corresponding to the heads of the two currents.  

These vorticity streaks are in fact induced by the formation of high and low streamwise-

velocity wall streaks, similar to the ones observed in turbulent boundary layers and 

channel flows.   

The analysis of the terms in the transport equation for the total kinetic energy 

showed that, in the later stages of the evolution of the current, the rates of change of the 

kinetic energy and potential energy, and the total dissipation rate become relatively 

constant suggesting that the gravity currents reach some sort of an equilibrium state.     
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8.1.2 3D Finite Volume Lock-Exchange Gravity Current 

Simulations 

The 3D simulations correctly predicted a practically constant front velocity over 

the slumping phase and a front speed decrease proportional to t-1/3 (the time t is measured 

from the release) over the inviscid phase, in agreement with theory and experiment.  

Additionally, a 2D simulation of a low Grashof number current (Gr=2.8×105) was found 

to directly transition from the slumping into the viscous phase, where the front speed 

decayed at a rate proportional to t-1/5, consistent with experiment and theory (Rottman & 

Simpson, 1983). 

In the 3D simulations the KH billows did not preserve their structure across the 

width of the channel and broke relatively rapidly into smaller 3D structures, similar to 

experimental observations.  In the near-wall region beneath the upstream part of the 

current, the intensity of the turbulence was large enough to induce the formation of low 

and high streamwise velocity streaks, similar to the ones observed in turbulent constant-

density channel flows.  As the turbulence started to decay in the downstream part of the 

current, the streaky structure disappeared.  A streaky distribution of the bed shear stress, 

that became finer as the Grashof number was increased, was observed in the region 

immediately behind the front.  Beneath the remaining body of the current, several large 

spanwise bands of high and low bed shear stress were observed.  The evolution in time of 

the balance among the potential energy, the kinetic energy and the integral of the total 

dissipation was compared for two simulations for which the only difference was the value 

of the Grashof number (Gr=2.3×109 vs. Gr=1012).   It was found that starting toward the 

end of the slumping phase, the variation of these quantities in time is proportional to 

ln(t)α, where the value of α is dependent on the variable. 



www.manaraa.com

 

 

218

8.1.3 3D Finite Volume Lock-Exchange Intrusive Gravity 

Current Simulations 

The temporal evolution of lock-exchange intrusion currents developing into a 

two-layer ambient fluid was analyzed for two cases.  In the first one (doubly-symmetric 

case), the depths of the two layers of ambient fluid were equal.  In the second 

nonsymmetric case, the depths of the two layers were different.  The agreement with the 

experimental data of Sutherland et al. (2004) was found to be satisfactory both 

qualitatively (structure of the intrusion current) and quantitatively (e.g., front velocity).  

The fact that the front velocity did not start to decay immediately after the end of the 

slumping phase in the doubly-symmetric case was due to the fact that lock fluid was still 

present behind the nose of the intrusion.  However, the overall size of the wake and head 

region was found to decay significantly after the end of the slumping phase.  Thus, it is 

expected that at a certain point mixing will become important in the nose region and the 

current will start decelerating. 

Visualizations of the interface surface in the front region showed that, eventually, 

the 3D instabilities were strong enough to produce the formation of relatively large-scale 

deformations, similar to the lobes and clefts structures observed for gravity currents 

propagating over a no-slip boundary.  The present simulation results appear to confirm 

the conclusions in the work of McElwaine & Patterson (2004) who provide evidence that 

the instability mechanism responsible for the development of lobes and clefts is not 

necessarily related to the presence of a no-slip surface, if the Reynolds numbers are high 

enough.  The length scales of the structures in the front region were found to be smaller 

than the lobe dimensions observed in currents propagating over a no-slip boundary at 

similar Reynolds numbers. 

Though most of the total dissipation was observed to occur in the dissipative 

wake region, the levels of the integral of the local dissipation rate at streamwise locations 

situated inside the head region were found to be comparable to those inside the wake 
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region.  This is due to the dissipation taking place in the thin shear layers at the front of 

the intrusion interface. 

8.2 Recommendations 

The present simulations proved that LES can be successfully used to predict and 

investigate several flow features and quantities that are very difficult or impossible to 

determine or study experimentally.  The model can be further enhanced to allow the 

study of other applications of fundamental or applied nature related to gravity current 

flows.  These include: 

• Study gravity currents propagating on constant or variable slope surfaces. This is 

important especially for applications in river engineering. 

• Study interaction between a gravity current and an obstacle (e.g., submerged dams 

in rivers or reservoirs, oil pipelines on the bottom of a lake or ocean, etc.).  

• Study evolution of particulate (turbidity) currents containing a non-uniform 

sediment size distribution.  Study turbidity currents induced by the passage of a 

compositional gravity current over a loose bed (quantification of the amount of 

sediment entrained and carried each time a lock facility is operated is one of the 

main practical concerns). 

• Study gravity currents propagating over rough surfaces.  This is important 

especially in river engineering where the gravity currents typically propagate over 

a deformed bed surface containing ripples, dunes, etc. 

• Study non-Boussinesq gravity currents in which the density differences between 

the lock and ambient fluid may be important.  Especially at flood conditions, the 

differences between the concentration of a turbidity current and that of the water 

in the river or estuary can be substantially higher than 2-4% for which the use of 

the Boussinesq approximation is acceptable.   
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